Uncertainty-aware segmentation for rainfall prediction post processing
- URL: http://arxiv.org/abs/2408.16792v1
- Date: Wed, 28 Aug 2024 16:31:40 GMT
- Title: Uncertainty-aware segmentation for rainfall prediction post processing
- Authors: Simone Monaco, Luca Monaco, Daniele Apiletti,
- Abstract summary: We explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts.
Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net.
Our results show that all deep learning models significantly outperform the average baseline NWP solution.
- Score: 0.7646713951724011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate precipitation forecasts are crucial for applications such as flood management, agricultural planning, water resource allocation, and weather warnings. Despite advances in numerical weather prediction (NWP) models, they still exhibit significant biases and uncertainties, especially at high spatial and temporal resolutions. To address these limitations, we explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts to obtain forecast uncertainties that lead to a better trade-off between accuracy and reliability. Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net, called SDE U-Net, tailored to segmentation problems like ours. We evaluate its performance for both typical and intense precipitation events. Our results show that all deep learning models significantly outperform the average baseline NWP solution, with our implementation of the SDE U-Net showing the best trade-off between accuracy and reliability. Integrating these models, which account for uncertainty, into operational forecasting systems can improve decision-making and preparedness for weather-related events.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Uncertainty quantification for data-driven weather models [0.0]
We study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather.
Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions.
In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results.
arXiv Detail & Related papers (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
arXiv Detail & Related papers (2023-10-04T09:27:39Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.