Skillful High-Resolution Ensemble Precipitation Forecasting with an Integrated Deep Learning Framework
- URL: http://arxiv.org/abs/2501.02905v1
- Date: Mon, 06 Jan 2025 10:29:38 GMT
- Title: Skillful High-Resolution Ensemble Precipitation Forecasting with an Integrated Deep Learning Framework
- Authors: Shuangshuang He, Hongli Liang, Yuanting Zhang, Xingyuan Yuan,
- Abstract summary: High-resolution precipitation forecasts are crucial for providing accurate weather prediction and supporting effective responses to extreme weather events.
We propose a physics-inspired deep learning framework for high-resolution ensemble precipitation forecasting.
- Score: 4.3313006430322165
- License:
- Abstract: High-resolution precipitation forecasts are crucial for providing accurate weather prediction and supporting effective responses to extreme weather events. Traditional numerical models struggle with stochastic subgrid-scale processes, while recent deep learning models often produce blurry results. To address these challenges, we propose a physics-inspired deep learning framework for high-resolution (0.05\textdegree{} $\times$ 0.05\textdegree{}) ensemble precipitation forecasting. Trained on ERA5 and CMPA high-resolution precipitation datasets, the framework integrates deterministic and probabilistic components. The deterministic model, based on a 3D SwinTransformer, captures average precipitation at mesoscale resolution and incorporates strategies to enhance performance, particularly for moderate to heavy rainfall. The probabilistic model employs conditional diffusion in latent space to account for uncertainties in residual precipitation at convective scales. During inference, ensemble members are generated by repeatedly sampling latent variables, enabling the model to represent precipitation uncertainty. Our model significantly enhances spatial resolution and forecast accuracy. Rank histogram shows that the ensemble system is reliable and unbiased. In a case study of heavy precipitation in southern China, the model outputs align more closely with observed precipitation distributions than ERA5, demonstrating superior capability in capturing extreme precipitation events. Additionally, 5-day real-time forecasts show good performance in terms of CSI scores.
Related papers
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
We propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional correlations to any blurriness modes.
arXiv Detail & Related papers (2024-10-08T08:38:23Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
We explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts.
Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net.
Our results show that all deep learning models significantly outperform the average baseline NWP solution.
arXiv Detail & Related papers (2024-08-28T16:31:40Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
This work extends recent video diffusion models to precipitation super-resolution.
We use a deterministic downscaler followed by a temporally-conditioned diffusion model to capture noise characteristics and high-frequency patterns.
Our analysis, capturing CRPS, MSE, precipitation distributions, and qualitative aspects using California and the Himalayas, establishes our method as a new standard for data-driven precipitation downscaling.
arXiv Detail & Related papers (2023-12-11T02:38:07Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Towards replacing precipitation ensemble predictions systems using
machine learning [0.0]
We propose a new approach to generating ensemble weather predictions for high-resolution precipitation.
The method uses generative adversarial networks to learn the complex patterns of precipitation.
We demonstrate the feasibility of generating realistic precipitation ensemble members on unseen higher resolutions.
arXiv Detail & Related papers (2023-04-20T12:20:35Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.