CNN Based Detection of Cardiovascular Diseases from ECG Images
- URL: http://arxiv.org/abs/2408.16800v1
- Date: Thu, 29 Aug 2024 11:26:07 GMT
- Title: CNN Based Detection of Cardiovascular Diseases from ECG Images
- Authors: Irem Sayin, Rana Gursoy, Buse Cicek, Yunus Emre Mert, Fatih Ozturk, Taha Emre Pamukcu, Ceylin Deniz Sevimli, Huseyin Uvet,
- Abstract summary: The model was built using the InceptionV3 architecture and optimized through transfer learning.
The developed model successfully detects MI and other cardiovascular conditions with an accuracy of 93.27%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study develops a Convolutional Neural Network (CNN) model for detecting myocardial infarction (MI) from Electrocardiogram (ECG) images. The model, built using the InceptionV3 architecture and optimized through transfer learning, was trained using ECG data obtained from the Ch. Pervaiz Elahi Institute of Cardiology in Pakistan. The dataset includes ECG images representing four different cardiac conditions: myocardial infarction, abnormal heartbeat, history of myocardial infarction, and normal heart activity. The developed model successfully detects MI and other cardiovascular conditions with an accuracy of 93.27%. This study demonstrates that deep learning-based models can provide significant support to clinicians in the early detection and prevention of heart attacks.
Related papers
- Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study [29.842103054029433]
This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR.
CardiacNets serves two primary functions: it evaluates cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension.
The findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy.
arXiv Detail & Related papers (2024-11-19T09:09:14Z) - CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos [10.06966396329022]
We propose a novel reconstruction-based approach named CardiacNet to learn a better representation of local cardiac structures and motion abnormalities.
CardiacNet is accompanied by the Consistency Deformation Codebook (CDC) and the Consistency Deformed-Discriminator (CDD) to learn the commonalities across abnormal and normal samples.
In experiments, our CardiacNet can achieve state-of-the-art results in three different cardiac disease assessment tasks.
arXiv Detail & Related papers (2024-10-28T06:11:03Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
There is a severe shortage of experienced cardiac sonographers, due to the heart's complex structure and significant operational challenges.
We present a Cardiac Copilot system capable of providing real-time probe movement guidance.
The core innovation lies in proposing a data-driven world model, named Cardiac Dreamer, for representing cardiac spatial structures.
We train our model with real-world ultrasound data and corresponding probe motion from 110 routine clinical scans with 151K sample pairs by three certified sonographers.
arXiv Detail & Related papers (2024-06-19T02:42:29Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
We investigated the potential of optical coherence tomography as an additional imaging technique to predict future cardiovascular disease (CVD)
We utilised a self-supervised deep learning approach based on Variational Autoencoders (VAE) to learn low-dimensional representations of high-dimensional 3D OCT images.
The choroidal layer visible in OCT images was identified as an important predictor of future CVD events using a novel approach to model explanability.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
We propose the first self-supervised contrastive approach that transfers domain-specific information from CMR images to ECG embeddings.
Our approach combines multimodal contrastive learning with masked data modeling to enable holistic cardiac screening solely from ECG data.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
We propose a framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images.
We use the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole frame to the subsequent frames of the cardiac cycle.
arXiv Detail & Related papers (2021-03-30T21:34:29Z) - ECGDetect: Detecting Ischemia via Deep Learning [0.0]
RCE- ECG-Detect is a machine learning model to detect the morphological patterns in significant ST change associated with myocardial ischemia.
Our deep neural network model, equipped with convolution layers, achieves 90.31% ROC-AUC, 89.34% sensitivity, 87.81% specificity.
arXiv Detail & Related papers (2020-09-28T11:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.