Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study
- URL: http://arxiv.org/abs/2411.13602v1
- Date: Tue, 19 Nov 2024 09:09:14 GMT
- Title: Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study
- Authors: Zhengyao Ding, Yujian Hu, Youyao Xu, Chengchen Zhao, Ziyu Li, Yiheng Mao, Haitao Li, Qian Li, Jing Wang, Yue Chen, Mengjia Chen, Longbo Wang, Xuesen Chu, Weichao Pan, Ziyi Liu, Fei Wu, Hongkun Zhang, Ting Chen, Zhengxing Huang,
- Abstract summary: This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR.
CardiacNets serves two primary functions: it evaluates cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension.
The findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy.
- Score: 29.842103054029433
- License:
- Abstract: Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR through cross-modal contrastive learning and generative pretraining. CardiacNets serves two primary functions: (1) it evaluates detailed cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension, using ECG input; and (2) it enhances interpretability by generating high-quality CMR images from ECG data. We train and validate the proposed CardiacNets on two large-scale public datasets (the UK Biobank with 41,519 individuals and the MIMIC-IV-ECG comprising 501,172 samples) as well as three private datasets (FAHZU with 410 individuals, SAHZU with 464 individuals, and QPH with 338 individuals), and the findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy. Furthermore, the generated CMR images provide valuable diagnostic support for physicians of all experience levels. This proof-of-concept study highlights how ECG can facilitate cross-modal insights into cardiac function assessment, paving the way for enhanced CVD screening and diagnosis at a population level.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Estimation of Cardiac and Non-cardiac Diagnosis from Electrocardiogram Features [1.068128849363198]
We use publicly available datasets to investigate the feasibility of inferring general diagnostic conditions from ECG features.
We train a tree-based model (XGBoost) based on ECG features and basic demographic features to estimate a wide range of diagnoses.
arXiv Detail & Related papers (2024-08-30T14:42:03Z) - CNN Based Detection of Cardiovascular Diseases from ECG Images [0.0]
The model was built using the InceptionV3 architecture and optimized through transfer learning.
The developed model successfully detects MI and other cardiovascular conditions with an accuracy of 93.27%.
arXiv Detail & Related papers (2024-08-29T11:26:07Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
There is a severe shortage of experienced cardiac sonographers, due to the heart's complex structure and significant operational challenges.
We present a Cardiac Copilot system capable of providing real-time probe movement guidance.
The core innovation lies in proposing a data-driven world model, named Cardiac Dreamer, for representing cardiac spatial structures.
We train our model with real-world ultrasound data and corresponding probe motion from 110 routine clinical scans with 151K sample pairs by three certified sonographers.
arXiv Detail & Related papers (2024-06-19T02:42:29Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
We propose the first self-supervised contrastive approach that transfers domain-specific information from CMR images to ECG embeddings.
Our approach combines multimodal contrastive learning with masked data modeling to enable holistic cardiac screening solely from ECG data.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
Diagnosing pre-existing heart diseases early in life is important to prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest.
To identify such diseases, phonocardiogram (PCG) and electrocardiogram (ECG) waveforms convey important information.
Here, we evaluate this hypothesis on a subset of the PhysioNet Challenge 2016 dataset which contains simultaneously acquired PCG and ECG recordings.
Our novel Dual-Convolutional Neural Network based approach uses transfer learning to tackle the problem of having limited amounts of simultaneous PCG and ECG data that is publicly available.
arXiv Detail & Related papers (2021-02-02T19:51:12Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.