AdapShare: An RL-Based Dynamic Spectrum Sharing Solution for O-RAN
- URL: http://arxiv.org/abs/2408.16842v1
- Date: Thu, 29 Aug 2024 18:10:36 GMT
- Title: AdapShare: An RL-Based Dynamic Spectrum Sharing Solution for O-RAN
- Authors: Sneihil Gopal, David Griffith, Richard A. Rouil, Chunmei Liu,
- Abstract summary: AdapShare is an ORAN-compatible solution leveraging Reinforcement Learning for intent-based spectrum management.
By employing RL agents, AdapShare intelligently learns network demand patterns and uses them to allocate resources.
AdapShare outperforms a quasi-static resource allocation scheme based on long-term network demand statistics.
- Score: 1.906179410714637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Open Radio Access Network (O-RAN) initiative, characterized by open interfaces and AI/ML-capable RAN Intelligent Controller (RIC), facilitates effective spectrum sharing among RANs. In this context, we introduce AdapShare, an ORAN-compatible solution leveraging Reinforcement Learning (RL) for intent-based spectrum management, with the primary goal of minimizing resource surpluses or deficits in RANs. By employing RL agents, AdapShare intelligently learns network demand patterns and uses them to allocate resources. We demonstrate the efficacy of AdapShare in the spectrum sharing scenario between LTE and NR networks, incorporating real-world LTE resource usage data and synthetic NR usage data to demonstrate its practical use. We use the average surplus or deficit and fairness index to measure the system's performance in various scenarios. AdapShare outperforms a quasi-static resource allocation scheme based on long-term network demand statistics, particularly when available resources are scarce or exceed the aggregate demand from the networks. Lastly, we present a high-level O-RAN compatible architecture using RL agents, which demonstrates the seamless integration of AdapShare into real-world deployment scenarios.
Related papers
- Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) addresses the variable demands of modern networks with unprecedented efficiency and adaptability.
This paper proposes a novel Meta Deep Reinforcement Learning (Meta-DRL) strategy, inspired by Model-Agnostic Meta-Learning (MAML) to advance resource block and downlink power allocation in O-RAN.
arXiv Detail & Related papers (2024-09-30T23:04:30Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - ProSAS: An O-RAN Approach to Spectrum Sharing between NR and LTE [1.906179410714637]
We introduce the Proactive Spectrum Adaptation Scheme (ProSAS), a data-driven, O-RAN-compatible spectrum sharing solution.
ProSAS is an intelligent radio resource demand prediction and management scheme for intent-driven spectrum management.
We illustrate the effectiveness of this solution using real-world LTE resource usage data and synthetically generated NR data.
arXiv Detail & Related papers (2024-04-14T01:02:19Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
arXiv Detail & Related papers (2023-09-13T18:58:34Z) - Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
We investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD.
Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.
arXiv Detail & Related papers (2023-05-12T10:32:26Z) - Intelligent Load Balancing and Resource Allocation in O-RAN: A
Multi-Agent Multi-Armed Bandit Approach [4.834203844100679]
We propose a multi-agent multi-armed bandit for load balancing and resource allocation (mmLBRA) scheme.
We also present the mmLBRA-LB and mmLBRA-RA sub-schemes that can operate independently in non-realtime RAN intelligent controller (Non-RT RIC) and near-RT RIC, respectively.
arXiv Detail & Related papers (2023-03-25T04:42:30Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Fairness Guaranteed and Auction-based x-haul and Cloud Resource
Allocation in Multi-tenant O-RANs [3.4519649635864584]
We propose and compare the performances of min-max fairness and Vickrey-Clarke-Groves (VCG) auction-based x-haul and DU-CU resource allocation mechanisms.
The min-max fair approach minimizes the maximum OPEX of RUs through cost-sharing proportional to their demands, whereas the VCG auction-based approach minimizes the total OPEX for all resources utilized.
arXiv Detail & Related papers (2023-01-02T11:03:50Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.