論文の概要: Modeling offensive content detection for TikTok
- arxiv url: http://arxiv.org/abs/2408.16857v1
- Date: Thu, 29 Aug 2024 18:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:18:55.784378
- Title: Modeling offensive content detection for TikTok
- Title(参考訳): TikTokにおける攻撃的コンテンツ検出のモデル化
- Authors: Kasper Cools, Gideon Mailette de Buy Wenniger, Clara Maathuis,
- Abstract要約: 本研究では,攻撃内容を含むTikTokデータの収集と解析を行う。
攻撃的なコンテンツ検出のための一連の機械学習とディープラーニングモデルを構築している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of social media transformed interpersonal communication and information consumption processes. This digital landscape accommodates user intentions, also resulting in an increase of offensive language and harmful behavior. Concurrently, social media platforms collect vast datasets comprising user-generated content and behavioral information. These datasets are instrumental for platforms deploying machine learning and data-driven strategies, facilitating customer insights and countermeasures against social manipulation mechanisms like disinformation and offensive content. Nevertheless, the availability of such datasets, along with the application of various machine learning techniques, to researchers and practitioners, for specific social media platforms regarding particular events, is limited. In particular for TikTok, which offers unique tools for personalized content creation and sharing, the existing body of knowledge would benefit from having diverse comprehensive datasets and associated data analytics solutions on offensive content. While efforts from social media platforms, research, and practitioner communities are seen on this behalf, such content continues to proliferate. This translates to an essential need to make datasets publicly available and build corresponding intelligent solutions. On this behalf, this research undertakes the collection and analysis of TikTok data containing offensive content, building a series of machine learning and deep learning models for offensive content detection. This is done aiming at answering the following research question: "How to develop a series of computational models to detect offensive content on TikTok?". To this end, a Data Science methodological approach is considered, 120.423 TikTok comments are collected, and on a balanced, binary classification approach, F1 score performance results of 0.863 is obtained.
- Abstract(参考訳): ソーシャルメディアの出現は、対人コミュニケーションと情報消費のプロセスを変えた。
このデジタルランドスケープは、ユーザの意図を許容し、攻撃的な言語の増加と有害な振る舞いをもたらす。
同時に、ソーシャルメディアプラットフォームは、ユーザー生成コンテンツと行動情報からなる膨大なデータセットを収集する。
これらのデータセットは、機械学習とデータ駆動戦略をデプロイするプラットフォームに役立ち、偽情報や攻撃的コンテンツといった社会的操作メカニズムに対する顧客の洞察と対策を容易にする。
それでも、そのようなデータセットは、さまざまな機械学習技術の応用とともに、研究者や実践者が特定のイベントに関する特定のソーシャルメディアプラットフォームで利用できることは限られている。
特にTikTokは、パーソナライズされたコンテンツの作成と共有のためのユニークなツールを提供しているが、既存の知識の体系は、さまざまな包括的なデータセットと関連するデータ分析ソリューションを攻撃的コンテンツ上に持つことで恩恵を受けるだろう。
ソーシャルメディアプラットフォーム、研究、実践者コミュニティの努力がこの代表として見られているが、そのようなコンテンツは今も増え続けている。
これは、データセットを公開し、対応するインテリジェントなソリューションを構築するために必要不可欠であることを意味します。
そこで本研究では,攻撃コンテンツを含むTikTokデータの収集と解析を行い,攻撃コンテンツ検出のための一連の機械学習モデルとディープラーニングモデルを構築した。
これは「TikTok上の攻撃的コンテンツを検出する一連の計算モデルをどのように開発するか?」という質問に答えることを目的としている。
この目的のために、データサイエンスの方法論的アプローチを検討し、120.423のTikTokコメントを収集し、バランスの取れたバイナリ分類アプローチにより、0.863のF1スコアパフォーマンス結果を得る。
関連論文リスト
- Capturing and Anticipating User Intents in Data Analytics via Knowledge Graphs [0.061446808540639365]
この研究は、人間中心の複雑な分析を捉えるための基本的なフレームワークとして、知識グラフ(KG)の使用について検討する。
生成されたKGに格納されたデータは、これらのシステムと対話するユーザーに補助(例えばレコメンデーション)を提供するために利用される。
論文 参考訳(メタデータ) (2024-11-01T20:45:23Z) - Leveraging GPT for the Generation of Multi-Platform Social Media Datasets for Research [0.0]
ソーシャルメディアデータセットは、偽情報、影響操作、ソーシャルセンシング、ヘイトスピーチ検出、サイバーいじめ、その他の重要なトピックの研究に不可欠である。
これらのデータセットへのアクセスは、コストとプラットフォーム規制のために制限されることが多い。
本稿では,複数のプラットフォームにまたがって,語彙的および意味論的に関連するソーシャルメディアデータセットを作成するための,大規模言語モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-07-11T09:12:39Z) - OPSD: an Offensive Persian Social media Dataset and its baseline evaluations [2.356562319390226]
本稿ではペルシャ語に対する2つの攻撃的データセットを紹介する。
第1のデータセットはドメインの専門家によって提供されるアノテーションで構成されており、第2のデータセットはWebクローリングによって得られたラベルなしデータの大規模なコレクションで構成されている。
得られたデータセットの3クラスと2クラスのF1スコアはそれぞれ76.9%、XLM-RoBERTaは89.9%であった。
論文 参考訳(メタデータ) (2024-04-08T14:08:56Z) - Capturing Pertinent Symbolic Features for Enhanced Content-Based
Misinformation Detection [0.0]
誤解を招く内容の検出は、言語的・ドメイン的多様性の極端さから、大きなハードルとなる。
本稿では,この現象を特徴付ける言語特性と,最も一般的な誤情報データセットの表現方法について分析する。
ニューラルネットワークモデルと組み合わせた関連する記号的知識の適切な利用は、誤解を招くコンテンツを検出するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-01-29T16:42:34Z) - Into the LAIONs Den: Investigating Hate in Multimodal Datasets [67.21783778038645]
本稿では、LAION-400MとLAION-2Bの2つのデータセットの比較監査を通して、ヘイトフルコンテンツに対するデータセットのスケーリングの効果について検討する。
その結果、データセットのスケールによってヘイトコンテンツは12%近く増加し、質的にも定量的にも測定された。
また、画像のみに基づいて算出されたNot Safe For Work(NSFW)値に基づくデータセットの内容のフィルタリングは、アルトテキストにおける有害なコンテンツをすべて排除するものではないことがわかった。
論文 参考訳(メタデータ) (2023-11-06T19:00:05Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
異なるプラットフォーム間で政治的コンテンツを検出するために、これらの技術がどのように使用できるかについて議論する。
辞書,教師付き機械学習,ニューラルネットワークに依存する3つの検出手法のパフォーマンスを比較した。
この結果から,ニューラルネットワークと機械学習に基づくモデルによって達成されるノイズの少ないデータに対して,事前処理がモデル性能に与える影響が限定された。
論文 参考訳(メタデータ) (2022-07-01T15:23:23Z) - Multimodal datasets: misogyny, pornography, and malignant stereotypes [2.8682942808330703]
最近リリースされたLAION-400Mデータセットは、Common-Crawlデータセットから解析された画像-Alt-textペアのCLIPフィルタリングデータセットである。
このデータセットには、レイプ、ポルノグラフィー、悪性のステレオタイプ、人種差別的および民族的スラー、その他の非常に問題のあるコンテンツが含まれています。
論文 参考訳(メタデータ) (2021-10-05T11:47:27Z) - Named Entity Recognition for Social Media Texts with Semantic
Augmentation [70.44281443975554]
名前付きエンティティ認識のための既存のアプローチは、短いテキストと非公式テキストで実行される場合、データ空間の問題に悩まされる。
そこで我々は,NER によるソーシャルメディアテキストに対するニューラルベースアプローチを提案し,ローカルテキストと拡張セマンティクスの両方を考慮に入れた。
論文 参考訳(メタデータ) (2020-10-29T10:06:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。