Addressing Information Asymmetry in Legal Disputes through Data-Driven Law Firm Rankings
- URL: http://arxiv.org/abs/2408.16863v1
- Date: Thu, 29 Aug 2024 19:04:45 GMT
- Title: Addressing Information Asymmetry in Legal Disputes through Data-Driven Law Firm Rankings
- Authors: Alexandre Mojon, Robert Mahari, Sandro Claudio Lera,
- Abstract summary: We apply an algorithm that generalizes the Bradley-Terry model to assess law firm effectiveness.
We find that our outcome-based ranking system better accounts for future performance than traditional reputation-based rankings.
- Score: 43.049786858258415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Legal disputes are on the rise, contributing to growing litigation costs. Parties in these disputes must select a law firm to represent them, however, public rankings of law firms are based on reputation and, we find, have little correlation with actual litigation outcomes, giving parties with more experience and inside knowledge an advantage. To enable litigants to make informed decisions, we present a novel dataset of 310,876 U.S. civil lawsuits and we apply an algorithm that generalizes the Bradley-Terry model to assess law firm effectiveness. We find that our outcome-based ranking system better accounts for future performance than traditional reputation-based rankings, which often fail to reflect future legal performance. Moreover, this predictability decays to zero as the number of interactions between law firms increases, providing new evidence to the long-standing debate about whether litigation win rates approach 50\% as information asymmetry diminishes. By prioritizing empirical results, our approach aims to provide a more equitable assessment of law firm quality, challenging existing prestige-focused metrics, and levels the playing field between litigants.
Related papers
- Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - Co-Matching: Towards Human-Machine Collaborative Legal Case Matching [69.21196368715144]
Successful legal case matching requires tacit knowledge of legal practitioners, which is difficult to verbalize and encode into machines.
We propose a collaborative matching framework called Co-Matching, which encourages both the machine and the legal practitioner to participate in the matching process.
Our study represents a pioneering effort in human-machine collaboration for the matching task, marking a milestone for future collaborative matching studies.
arXiv Detail & Related papers (2024-05-16T16:50:31Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
We present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents.
This is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation.
arXiv Detail & Related papers (2024-03-07T12:47:42Z) - The right to audit and power asymmetries in algorithm auditing [68.8204255655161]
We elaborate on the challenges and asymmetries mentioned by Sandvig at the IC2S2 2021.
We also contribute a discussion of the asymmetries that were not covered by Sandvig.
We discuss the implications these asymmetries have for algorithm auditing research.
arXiv Detail & Related papers (2023-02-16T13:57:41Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
We present a novel algorithm (FAir Interpolation Method: FAIM) for continuously interpolating between three fairness criteria.
We demonstrate the effectiveness of our algorithm when applied to synthetic data, the COMPAS data set, and a new, real-world data set from the e-commerce sector.
arXiv Detail & Related papers (2022-12-01T12:47:54Z) - Algorithmic Fairness in Business Analytics: Directions for Research and
Practice [24.309795052068388]
This paper offers a forward-looking, BA-focused review of algorithmic fairness.
We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms.
We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted.
arXiv Detail & Related papers (2022-07-22T10:21:38Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Performance in the Courtroom: Automated Processing and Visualization of
Appeal Court Decisions in France [20.745220428708457]
We use NLP methods to extract interesting entities/data from judgments to construct networks of lawyers and judgments.
We propose metrics to rank lawyers based on their experience, wins/loss ratio and their importance in the network of lawyers.
arXiv Detail & Related papers (2020-06-11T08:22:59Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.