Josephson Traveling Wave Parametric Amplifiers with Plasma oscillation phase-matching
- URL: http://arxiv.org/abs/2408.16869v1
- Date: Thu, 29 Aug 2024 19:22:50 GMT
- Title: Josephson Traveling Wave Parametric Amplifiers with Plasma oscillation phase-matching
- Authors: Emil Rizvanov, Samuel Kern, Pavol Neilinger, Miroslav Grajcar,
- Abstract summary: We propose to employ the Josephson junctions, which constitute the centerline of the amplifier, as resonant elements for phase matching.
The proposed TWPA design has a gain of 15 dB and a 3.5 GHz bandwidth, which is comparable to the state-of-the-art TWPAs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High gain and large bandwidth of traveling-wave parametric amplifier exploiting the nonlinearity of Josephson Junctions can be achieved by fulfilling the so-called phase-matching condition. This condition is usually addressed by placing resonant structures along the waveguide or by periodic modulations of its parameters, creating gaps in the waveguide's dispersion. Here, we propose to employ the Josephson junctions, which constitute the centerline of the amplifier, as resonant elements for phase matching. By numerical simulations in JoSIM (and WRspice) software, we show that Josephson plasma oscillations can be utilized to create wavevector mismatch sufficient for phase matching as well as to prevent the conversion of the pump energy to higher harmonics. The proposed TWPA design has a gain of 15 dB and a 3.5 GHz bandwidth, which is comparable to the state-of-the-art TWPAs.
Related papers
- In-operando microwave scattering-parameter calibrated measurement of a Josephson travelling wave parametric amplifier [0.0]
Superconducting travelling wave parametric amplifiers (TWPAs) are broadband near-quantum limited microwave amplifiers commonly used for qubit readout.
We apply a microwave calibration technique to extract the S- parameters of a Josephson junction based TWPA in-operando.
arXiv Detail & Related papers (2024-06-05T08:46:41Z) - Investigating pump harmonics generation in a SNAIL-based Traveling Wave Parametric Amplifier [0.0]
Traveling Wave Parametric Amplifiers (TWPAs) are extensively employed in experiments involving weak microwave signals for their highly desirable quantum-limited and broadband characteristics.
However, TWPAs' broadband nature comes with the disadvantage of admitting the activation of spurious nonlinear processes, such as harmonics generation, that can potentially degrade amplification performance.
Here we experimentally investigate a Josephson TWPA device with SNAIL (Superconducting Asymmetric Inductive Element)-based unit cells focusing on the amplification behaviour along with the generation of second and third harmonics of the pump.
arXiv Detail & Related papers (2024-05-30T14:35:23Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Intermodulation Distortion in a Josephson Traveling Wave Parametric
Amplifier [2.814412986458045]
Josephson traveling wave parametric amplifiers enable amplification of weak microwave signals close to the quantum limit.
Intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits.
arXiv Detail & Related papers (2022-10-10T16:03:23Z) - Numerical analysis of a three-wave-mixing Josephson traveling-wave
parametric amplifier with engineered dispersion loadings [62.997667081978825]
Recently proposed Josephson traveling-wave parametric amplifier has great potential in achieving a gain of 20 dB and a flat bandwidth of at least 4 GHz.
We model the advanced JTWPA circuit with periodic modulation of the circuit parameters.
engineered dispersion loadings allow achieving sufficiently wide $3$ dB-bandwidth from $3$ GHz to $9$ GHz combined with a reasonably small ripple.
arXiv Detail & Related papers (2022-09-22T14:46:04Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - Directional Josephson traveling-wave parametric amplifier via
non-Hermitian topology [58.720142291102135]
Low-noise microwave amplification is crucial for detecting weak signals in quantum technologies and radio astronomy.
Current amplifiers do not satisfy all these requirements, severely limiting the scalability of superconducting quantum devices.
Here, we demonstrate the feasibility of building a near-ideal quantum amplifier using a homogeneous Josephson junction array and the non-trivial topology of its dynamics.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Driven-dissipative topological phases in parametric resonator arrays [62.997667081978825]
We find two phases of topological amplification, both with directional transport and exponential gain with the number of sites, and one of them featuring squeezing.
We characterize the resilience to disorder of the different phases and their stability, gain, and noise-to-signal ratio.
We discuss their experimental implementation with state-of-the-art techniques.
arXiv Detail & Related papers (2022-07-27T18:00:05Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Broadband Squeezed Microwaves and Amplification with a Josephson
Traveling-Wave Parametric Amplifier [0.8527063867655793]
Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science.
We develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers.
Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation.
arXiv Detail & Related papers (2022-01-27T01:31:32Z) - Self phase-matched broadband amplification with a left-handed Josephson
transmission line [0.46040036610482665]
Josephson Traveling Wave Parametric Amplifiers (J-TWPAs) are promising platforms for realizing broadband quantum-limited amplification of microwave signals.
We present a simple J-TWPA design based on left-handed' (negative-index) nonlinear Josephson metamaterial.
The resultant efficiency of four-wave mixing process can implement gains in excess of 20 dB over few GHz bandwidths with much shorter lines.
arXiv Detail & Related papers (2022-01-12T19:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.