論文の概要: AI-driven Reverse Engineering of QML Models
- arxiv url: http://arxiv.org/abs/2408.16929v1
- Date: Thu, 29 Aug 2024 22:08:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 16:58:54.749148
- Title: AI-driven Reverse Engineering of QML Models
- Title(参考訳): QMLモデルのAI駆動リバースエンジニアリング
- Authors: Archisman Ghosh, Swaroop Ghosh,
- Abstract要約: 最も差し迫ったリスクの1つは、悪意のあるアクターによるリバースエンジニアリング(RE)の可能性である。
我々は、信頼できないサードパーティベンダーにデプロイされたトランスパイルされたQMLモデルからパラメータを抽出するオートエンコーダベースのアプローチを導入する。
- 参考スコア(独自算出の注目度): 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum machine learning (QML) is a rapidly emerging area of research, driven by the capabilities of Noisy Intermediate-Scale Quantum (NISQ) devices. With the progress in the research of QML models, there is a rise in third-party quantum cloud services to cater to the increasing demand for resources. New security concerns surface, specifically regarding the protection of intellectual property (IP) from untrustworthy service providers. One of the most pressing risks is the potential for reverse engineering (RE) by malicious actors who may steal proprietary quantum IPs such as trained parameters and QML architecture, modify them to remove additional watermarks or signatures and re-transpile them for other quantum hardware. Prior work presents a brute force approach to RE the QML parameters which takes exponential time overhead. In this paper, we introduce an autoencoder-based approach to extract the parameters from transpiled QML models deployed on untrusted third-party vendors. We experiment on multi-qubit classifiers and note that they can be reverse-engineered under restricted conditions with a mean error of order 10^-1. The amount of time taken to prepare the dataset and train the model to reverse engineer the QML circuit being of the order 10^3 seconds (which is 10^2x better than the previously reported value for 4-layered 4-qubit classifiers) makes the threat of RE highly potent, underscoring the need for continued development of effective defenses.
- Abstract(参考訳): 量子機械学習(QML)は、ノイズ中間スケール量子(NISQ)デバイスによって駆動される、急速に発展する研究分野である。
QMLモデルの研究の進展に伴い、リソース需要の増加に対応するために、サードパーティの量子クラウドサービスが増加している。
新たなセキュリティ問題、特に信頼できないサービスプロバイダから知的財産権(IP)を保護すること。
最も差し迫ったリスクの1つは、トレーニングされたパラメータやQMLアーキテクチャといった独自の量子IPを盗み、それらを修正して追加の透かしやシグネチャを取り除き、他の量子ハードウェアに再送する悪意のあるアクターによるリバースエンジニアリング(RE)の可能性である。
以前の作業では、指数的な時間オーバーヘッドを必要とするQMLパラメータに対して、ブルートフォースアプローチが提案されている。
本稿では,信頼できないサードパーティベンダにデプロイされたQMLモデルから,自動エンコーダに基づくパラメータ抽出手法を提案する。
マルチキュービット分類器について実験し、10^-1の平均誤差で制限条件下でリバースエンジニアリングできることに注意する。
データセットの作成に要する時間と、QML回路を10^3秒(4重4ビット分類器の報告値より10^2倍高い)でリバースエンジニアリングするためにモデルを訓練する時間は、REの脅威を非常に強力にし、効果的な防御の継続的な開発の必要性を裏付けるものである。
関連論文リスト
- Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
量子機械学習(Quantum Machine Learning、QML)は、変分量子回路(VQC)を用いて機械学習タスクに取り組むアルゴリズムのカテゴリである。
近年の研究では、限られたトレーニングデータサンプルからQMLモデルを効果的に一般化できることが示されている。
QMLは、古典的および量子コンピューティングリソースの両方を利用するハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-08-18T18:21:24Z) - The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models [2.348041867134616]
量子機械学習(QML)は、機械学習モデルと量子コンピューティングのパラダイムを融合させる。
量子コンピューティングのNoisy Intermediate-Scale Quantum(NISQ)時代における多くのサードパーティベンダーの拡大により、QMLモデルのセキュリティが最重要となる。
我々は、信頼できない量子クラウドプロバイダが、推論中にトランスパイルされたユーザ設計のトレーニングされたQMLモデルにホワイトボックスアクセスを持つ敵であると仮定する。
論文 参考訳(メタデータ) (2024-07-09T21:35:19Z) - PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud [7.87660609586004]
クラウドコンピューティングは量子機械学習(QML)においてデータ漏洩のリスクが高い
本稿では,QMLのデータセキュリティをQパラダイム,すなわちPristiQで保護するための協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-20T22:03:32Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングと古典的な機械学習の有望な交わりとして登場した。
本稿では,セキュリティ上の懸念と強みがQMLとどのように結びついているのかを,系統的な文献レビューを用いて論じる。
論文 参考訳(メタデータ) (2024-01-15T15:35:43Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
目的は,ロボットの軌道とNOMA復号命令を協調的に最適化することで,マルチロボットシステムにおける全軌道の総和率を最大化することである。
ARIMAモデルとDouble Deep Q-network (D$3$QN)アルゴリズムを組み合わせたML方式を提案する。
論文 参考訳(メタデータ) (2022-05-03T17:14:47Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。