論文の概要: The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models
- arxiv url: http://arxiv.org/abs/2407.07237v2
- Date: Mon, 15 Jul 2024 14:27:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 13:41:05.225584
- Title: The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models
- Title(参考訳): 量子模倣ゲーム:量子機械学習モデルのリバースエンジニアリング
- Authors: Archisman Ghosh, Swaroop Ghosh,
- Abstract要約: 量子機械学習(QML)は、機械学習モデルと量子コンピューティングのパラダイムを融合させる。
量子コンピューティングのNoisy Intermediate-Scale Quantum(NISQ)時代における多くのサードパーティベンダーの拡大により、QMLモデルのセキュリティが最重要となる。
我々は、信頼できない量子クラウドプロバイダが、推論中にトランスパイルされたユーザ設計のトレーニングされたQMLモデルにホワイトボックスアクセスを持つ敵であると仮定する。
- 参考スコア(独自算出の注目度): 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum Machine Learning (QML) amalgamates quantum computing paradigms with machine learning models, providing significant prospects for solving complex problems. However, with the expansion of numerous third-party vendors in the Noisy Intermediate-Scale Quantum (NISQ) era of quantum computing, the security of QML models is of prime importance, particularly against reverse engineering, which could expose trained parameters and algorithms of the models. We assume the untrusted quantum cloud provider is an adversary having white-box access to the transpiled user-designed trained QML model during inference. Reverse engineering (RE) to extract the pre-transpiled QML circuit will enable re-transpilation and usage of the model for various hardware with completely different native gate sets and even different qubit technology. Such flexibility may not be obtained from the transpiled circuit which is tied to a particular hardware and qubit technology. The information about the number of parameters, and optimized values can allow further training of the QML model to alter the QML model, tamper with the watermark, and/or embed their own watermark or refine the model for other purposes. In this first effort to investigate the RE of QML circuits, we perform RE and compare the training accuracy of original and reverse-engineered Quantum Neural Networks (QNNs) of various sizes. We note that multi-qubit classifiers can be reverse-engineered under specific conditions with a mean error of order 1e-2 in a reasonable time. We also propose adding dummy fixed parametric gates in the QML models to increase the RE overhead for defense. For instance, adding 2 dummy qubits and 2 layers increases the overhead by ~1.76 times for a classifier with 2 qubits and 3 layers with a performance overhead of less than 9%. We note that RE is a very powerful attack model which warrants further efforts on defenses.
- Abstract(参考訳): 量子機械学習(QML)は、機械学習モデルと量子コンピューティングのパラダイムを融合させ、複雑な問題を解決するための大きな可能性を提供する。
しかし、量子コンピューティングのノイズイ中間スケール量子(NISQ)時代における多くのサードパーティベンダーの拡大により、QMLモデルのセキュリティは特にリバースエンジニアリングに対して重要であり、モデルの訓練されたパラメータやアルゴリズムを公開できる。
我々は、信頼できない量子クラウドプロバイダが、推論中にトランスパイルされたユーザ設計のトレーニングされたQMLモデルにホワイトボックスアクセスを持つ敵であると仮定する。
逆エンジニアリング(RE)は、プリトランスパイルされたQML回路を抽出し、全く異なるネイティブゲートセットと異なるキュービット技術を持つ様々なハードウェアに対するモデルの再トランスパイルと使用を可能にする。
このような柔軟性は、特定のハードウェアと量子ビット技術に結びついているトランスパイル回路から得られない。
パラメータの数や最適化された値に関する情報は、QMLモデルのさらなるトレーニングを可能にして、QMLモデルを変更したり、透かしを改ざんしたり、あるいは独自の透かしを埋め込んだり、他の目的のためにモデルを洗練したりすることができる。
本稿では,QML回路のREを調べるための最初の試みとして,様々なサイズのオリジナルおよびリバースエンジニアリング量子ニューラルネットワーク(QNN)のトレーニング精度を比較した。
マルチキュービット分類器は、順序1e-2の平均誤差を妥当な時間で、特定の条件下でリバースエンジニアリング可能であることに留意する。
また,QMLモデルにダミー固定パラメトリックゲートを追加して,防御のREオーバーヘッドを増大させる方法を提案する。
例えば、2つのダミーキュービットと2つのレイヤを追加すると、2つのキュービットと3つのレイヤを持つ分類器のオーバーヘッドが約1.76倍になる。
REは非常に強力な攻撃モデルであり、防衛へのさらなる努力を保証することに留意する。
関連論文リスト
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - QuMoS: A Framework for Preserving Security of Quantum Machine Learning
Model [10.543277412560233]
セキュリティは常に、機械学習(ML)アプリケーションにおいて重要な問題でした。
モデルステアリング攻撃は最も基本的な問題だが重要な問題の一つである。
モデルセキュリティを維持するための新しいフレームワーク、QuMoSを提案する。
論文 参考訳(メタデータ) (2023-04-23T01:17:43Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Study of Feature Importance for Quantum Machine Learning Models [0.0]
予測器の重要性は、古典的および量子機械学習(QML)におけるデータ前処理パイプラインの重要な部分である
この研究は、QMLモデルの特徴的重要性を探求し、彼らの古典的機械学習(CML)と対比した最初の研究である。
我々はQMLモデルを訓練し、実世界のデータセット上で古典的アルゴリズムから特徴的重要度を計算するハイブリッド量子古典的アーキテクチャを開発した。
論文 参考訳(メタデータ) (2022-02-18T15:21:47Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
本稿では,ネットワークアーキテクチャ検索手法と量子化手法を組み合わせることで,両者のメリットを享受することを提案する。
まず、多数の量子化モデルを取得するために、共有ステップサイズでアーキテクチャと量子化の合同トレーニングを提案する。
次に、量子化されたモデルを低ビットに転送するためにビット継承方式を導入し、さらに時間コストを削減し、量子化精度を向上させる。
論文 参考訳(メタデータ) (2020-10-09T03:52:16Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
ノイズのある中間量子(NISQ)デバイス上での変分量子機械学習(QML)アルゴリズムの実装には、必要となるキュービット数とマルチキュービットゲートに関連するノイズに関連する問題がある。
本稿では,これらの問題に対処するための量子ネットワークを用いた変分QMLアルゴリズムを提案する。
他の多くのQMLアルゴリズムとは異なり、我々の量子回路は単一量子ビットゲートのみで構成されており、ノイズに対して堅牢である。
論文 参考訳(メタデータ) (2020-07-20T16:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。