Causal Representation-Based Domain Generalization on Gaze Estimation
- URL: http://arxiv.org/abs/2408.16964v1
- Date: Fri, 30 Aug 2024 01:45:22 GMT
- Title: Causal Representation-Based Domain Generalization on Gaze Estimation
- Authors: Younghan Kim, Kangryun Moon, Yongjun Park, Yonggyu Kim,
- Abstract summary: We propose the Causal Representation-Based Domain Generalization on Gaze Estimation framework.
We employ an adversarial training manner and an additional penalizing term to extract domain-invariant features.
By leveraging these modules, CauGE ensures that the neural networks learn from representations that meet the causal mechanisms' general principles.
- Score: 10.283904882611463
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The availability of extensive datasets containing gaze information for each subject has significantly enhanced gaze estimation accuracy. However, the discrepancy between domains severely affects a model's performance explicitly trained for a particular domain. In this paper, we propose the Causal Representation-Based Domain Generalization on Gaze Estimation (CauGE) framework designed based on the general principle of causal mechanisms, which is consistent with the domain difference. We employ an adversarial training manner and an additional penalizing term to extract domain-invariant features. After extracting features, we position the attention layer to make features sufficient for inferring the actual gaze. By leveraging these modules, CauGE ensures that the neural networks learn from representations that meet the causal mechanisms' general principles. By this, CauGE generalizes across domains by extracting domain-invariant features, and spurious correlations cannot influence the model. Our method achieves state-of-the-art performance in the domain generalization on gaze estimation benchmark.
Related papers
- Fine-Tuning Pre-trained Language Models for Robust Causal Representation Learning [26.29386609645171]
Fine-tuning of pre-trained language models (PLMs) has been shown to be effective across various domains.
We show that a robust representation can be derived through a so-called causal front-door adjustment, based on a decomposition assumption.
Our work thus sheds light on the domain generalization problem by introducing links between fine-tuning and causal mechanisms into representation learning.
arXiv Detail & Related papers (2024-10-18T11:06:23Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
We focus on the problem of domain generalization for cross-domain sentiment analysis.
We propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations.
A series of experiments show the great performance and robustness of our model.
arXiv Detail & Related papers (2024-02-22T13:26:56Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
We propose a novel domain generalization technique, referred to as Randomized Adversarial Style Perturbation (RASP)
The proposed algorithm perturbs the style of a feature in an adversarial direction towards a randomly selected class, and makes the model learn against being misled by the unexpected styles observed in unseen target domains.
We evaluate the proposed algorithm via extensive experiments on various benchmarks and show that our approach improves domain generalization performance, especially in large-scale benchmarks.
arXiv Detail & Related papers (2023-04-04T17:07:06Z) - Domain-aware Triplet loss in Domain Generalization [0.0]
Domain shift is caused by discrepancies in the distributions of the testing and training data.
We design a domainaware triplet loss for domain generalization to help the model to cluster similar semantic features.
Our algorithm is designed to disperse domain information in the embedding space.
arXiv Detail & Related papers (2023-03-01T14:02:01Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Variational Disentanglement for Domain Generalization [68.85458536180437]
We propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN)
VDN is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data.
arXiv Detail & Related papers (2021-09-13T09:55:32Z) - Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification [34.813965300584776]
In person re-identification, the domain and class are correlated.
We show that domain adversarial learning will lose certain information about class due to this domain-class correlation.
Our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark.
arXiv Detail & Related papers (2021-06-29T09:45:03Z) - Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms [34.99779761100095]
Domain generalization aims to learn knowledge invariant across different distributions.
We consider the causal invariance of the average causal effect of the features to the labels.
arXiv Detail & Related papers (2021-06-02T04:01:22Z) - Heuristic Domain Adaptation [105.59792285047536]
Heuristic Domain Adaptation Network (HDAN) explicitly learns the domain-invariant and domain-specific representations.
Heuristic Domain Adaptation Network (HDAN) has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA.
arXiv Detail & Related papers (2020-11-30T04:21:35Z) - Learning to Learn with Variational Information Bottleneck for Domain
Generalization [128.90691697063616]
Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift.
We introduce a probabilistic meta-learning model for domain generalization, in which parameters shared across domains are modeled as distributions.
To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB.
arXiv Detail & Related papers (2020-07-15T12:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.