論文の概要: Approximately Invertible Neural Network for Learned Image Compression
- arxiv url: http://arxiv.org/abs/2408.17073v1
- Date: Fri, 30 Aug 2024 07:57:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 16:09:30.433341
- Title: Approximately Invertible Neural Network for Learned Image Compression
- Title(参考訳): 学習画像圧縮のためのおよそ不可逆ニューラルネットワーク
- Authors: Yanbo Gao, Meng Fu, Shuai Li, Chong Lv, Xun Cai, Hui Yuan, Mao Ye,
- Abstract要約: 本稿では,学習画像圧縮のための約可逆ニューラルネットワーク(A-INN)フレームワークを提案する。
INNと量子化を用いた場合、損失画像圧縮における速度歪みの最適化を定式化する。
大規模な実験により,提案したA-INNは既存の学習画像圧縮法よりも優れていた。
- 参考スコア(独自算出の注目度): 19.330720001489937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned image compression have attracted considerable interests in recent years. It typically comprises an analysis transform, a synthesis transform, quantization and an entropy coding model. The analysis transform and synthesis transform are used to encode an image to latent feature and decode the quantized feature to reconstruct the image, and can be regarded as coupled transforms. However, the analysis transform and synthesis transform are designed independently in the existing methods, making them unreliable in high-quality image compression. Inspired by the invertible neural networks in generative modeling, invertible modules are used to construct the coupled analysis and synthesis transforms. Considering the noise introduced in the feature quantization invalidates the invertible process, this paper proposes an Approximately Invertible Neural Network (A-INN) framework for learned image compression. It formulates the rate-distortion optimization in lossy image compression when using INN with quantization, which differentiates from using INN for generative modelling. Generally speaking, A-INN can be used as the theoretical foundation for any INN based lossy compression method. Based on this formulation, A-INN with a progressive denoising module (PDM) is developed to effectively reduce the quantization noise in the decoding. Moreover, a Cascaded Feature Recovery Module (CFRM) is designed to learn high-dimensional feature recovery from low-dimensional ones to further reduce the noise in feature channel compression. In addition, a Frequency-enhanced Decomposition and Synthesis Module (FDSM) is developed by explicitly enhancing the high-frequency components in an image to address the loss of high-frequency information inherent in neural network based image compression. Extensive experiments demonstrate that the proposed A-INN outperforms the existing learned image compression methods.
- Abstract(参考訳): 学習された画像圧縮は近年、かなりの関心を集めている。
典型的には解析変換、合成変換、量子化、エントロピー符号化モデルを含む。
解析変換と合成変換は、画像から潜時特徴を符号化し、量子化された特徴を復号して画像を再構成し、結合変換とみなすことができる。
しかし、解析変換と合成変換は既存の方法で独立に設計されており、高品質な画像圧縮では信頼性が低い。
生成モデリングにおいて、可逆ニューラルネットワークにインスパイアされた可逆モジュールは、複合解析および合成変換を構築するために使用される。
本稿では,特徴量化で導入された雑音が可逆過程を無効化することを考慮し,学習画像圧縮のための近似可逆ニューラルネットワーク(A-INN)フレームワークを提案する。
INNと量子化を用いた場合の損失画像圧縮における速度歪みの最適化を定式化する。
一般に、A-INN は INN ベースの損失圧縮法の理論的基礎として利用できる。
この定式化に基づき、プログレッシブデノナイジングモジュール(PDM)を用いたA-INNを開発し、デコードにおける量子化ノイズを効果的に低減する。
さらに、カスケード型特徴回復モジュール(CFRM)は、低次元の特徴回復を学習し、特徴チャネル圧縮のノイズをさらに低減するために設計されている。
さらに、ニューラルネットワークベースの画像圧縮に固有の高周波情報の損失に対応するために、画像中の高周波成分を明示的に強調することにより、周波数強調分解合成モジュール(FDSM)を開発する。
大規模な実験により,提案したA-INNは既存の学習画像圧縮法よりも優れていた。
関連論文リスト
- Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
リモートセンシング画像をデコードして、特に低解像度で高い知覚品質を実現することは、依然として大きな課題である。
Invertible Neural Network-based Remote Sensor Image compression (INN-RSIC)法を提案する。
我々の INN-RSIC は、認識品質の観点から、既存の最先端のディープラーニングベースの画像圧縮手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-17T03:52:37Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
我々は,画像特徴相関を利用した画像圧縮のための新しい量子化法(QR)を開発し,量子化の影響を緩和する。
提案手法は,量子化された特徴量から未知の特徴量を予測するニューラルネットワークアーキテクチャを設計する。
評価では、QRを最先端のニューラルイメージコーデックに統合し、広く使用されているKodakベンチマークの強化モデルとベースラインを比較する。
論文 参考訳(メタデータ) (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
ニューラル画像圧縮ネットワークは、エントロピーモデルが潜在コードの真の分布とどの程度うまく一致しているかによって制御される。
本稿では,緩和されたスカラー量子化が低ビットレートを実現するのに役立つ特徴レベルの周波数歪みを提案する。
提案するネットワークは,手作業によるコーデックだけでなく,空間的自己回帰エントロピーモデル上に構築されたニューラルネットワークベースのコーデックよりも優れている。
論文 参考訳(メタデータ) (2023-08-04T14:55:44Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
本稿では,拡散生成モデルを用いた画像圧縮のエンドツーエンド最適化について概説する。
VAEベースのニューラル圧縮とは対照的に、(平均)デコーダは決定論的ニューラルネットワークであり、私たちのデコーダは条件付き拡散モデルである。
提案手法では,GANモデルよりもFIDスコアが強く,VAEモデルとの競合性能も高い。
論文 参考訳(メタデータ) (2022-09-14T21:53:27Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Substitutional Neural Image Compression [48.20906717052056]
置換型ニューラルイメージ圧縮(snic)は、あらゆるニューラルイメージ圧縮モデルを強化する一般的なアプローチである。
フレキシブルな歪みメトリックに向けて圧縮性能を高め、単一のモデルインスタンスを使用したビットレート制御を可能にする。
論文 参考訳(メタデータ) (2021-05-16T20:53:31Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
ロスシー画像圧縮は、デジタル画像の最もよく使われる演算子の1つである。
Invertible Lossy Compression (ILC) と呼ばれる新しい非可逆的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T04:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。