論文の概要: Using Quantum Solved Deep Boltzmann Machines to Increase the Data Efficiency of RL Agents
- arxiv url: http://arxiv.org/abs/2408.17240v1
- Date: Fri, 30 Aug 2024 12:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:28:41.230775
- Title: Using Quantum Solved Deep Boltzmann Machines to Increase the Data Efficiency of RL Agents
- Title(参考訳): 量子解法深部ボルツマンマシンを用いたRLエージェントのデータ効率向上
- Authors: Daniel Kent, Clement O'Rourke, Jake Southall, Kirsty Duncan, Adrian Bedford,
- Abstract要約: この研究は、Deep Boltzmann Machines を最先端アルゴリズムである Proximal Policy optimization に拡張するための、既存の作業の上に構築されている。
D-WAVE量子アニールを用いて解くと、データの効率が2倍に向上することを示す。
したがって、データ効率のよい強化学習手法を活かしたいと願っている機械学習や量子コミュニティによって使用されるものと期待している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning algorithms, such as those used in Reinforcement Learning, often require large quantities of data to train effectively. In most cases, the availability of data is not a significant issue. However, for some contexts, such as in autonomous cyber defence, we require data efficient methods. Recently, Quantum Machine Learning and Boltzmann Machines have been proposed as solutions to this challenge. In this work we build upon the pre-existing work to extend the use of Deep Boltzmann Machines to the cutting edge algorithm Proximal Policy Optimisation in a Reinforcement Learning cyber defence environment. We show that this approach, when solved using a D-WAVE quantum annealer, can lead to a two-fold increase in data efficiency. We therefore expect it to be used by the machine learning and quantum communities who are hoping to capitalise on data-efficient Reinforcement Learning methods.
- Abstract(参考訳): 強化学習で使用されるディープラーニングアルゴリズムは、効果的にトレーニングするために大量のデータを必要とすることが多い。
ほとんどの場合、データの可用性は大きな問題ではありません。
しかし、自律的なサイバー防衛のような状況では、データ効率のよい方法が必要である。
近年,この課題に対する解決策として,量子機械学習とボルツマンマシンが提案されている。
本研究は,Deep Boltzmann Machines の最先端アルゴリズムへの利用を強化学習型サイバー防御環境における近似ポリシー最適化に拡張するための,既存の作業に基づいて構築する。
D-WAVE量子アニールを用いて解くと、データの効率が2倍に向上することを示す。
したがって、データ効率のよい強化学習手法を活かしたいと願っている機械学習や量子コミュニティによって使用されるものと期待している。
関連論文リスト
- Towards provably efficient quantum algorithms for large-scale
machine-learning models [11.440134080370811]
我々は、フォールトトレラントな量子コンピューティングが、一般的な(確率的な)勾配降下アルゴリズムに対して、証明可能な効率のよい解決を提供する可能性を示している。
700万から1億3300万のパラメータから、大規模な機械学習モデルのインスタンスをベンチマークします。
論文 参考訳(メタデータ) (2023-03-06T19:00:27Z) - Quantum Semi-Supervised Kernel Learning [4.726777092009554]
本稿では,セミスーパービジョンカーネル支援ベクトルマシンを学習するための量子機械学習アルゴリズムを提案する。
完全教師付き量子LS-SVMと同じスピードアップを維持していることを示す。
論文 参考訳(メタデータ) (2022-04-22T13:39:55Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann
Machines [2.015864965523243]
我々は、より困難な問題を解決するために、オリジナルの概念の拡張を提案する。
我々は、経験的なリプレイバッファを追加し、ターゲットとポリシーの値を近似するために異なるネットワークを使用します。
量子サンプリングは、強化学習タスクには有望な方法であることが証明されているが、現在はQPUサイズによって制限されている。
論文 参考訳(メタデータ) (2021-09-22T17:59:24Z) - Large-scale quantum machine learning [0.0]
ランダム化計測を用いて量子カーネルを計測し、2次高速化を行い、大規模データセットを高速に処理する。
我々は高次元データを回路深度と線形にスケーリングする特徴数で量子コンピュータに効率的にエンコードする。
現在利用可能な量子コンピュータを使用して、MNISTデータベースは10年ではなく220時間以内に処理できる。
論文 参考訳(メタデータ) (2021-08-02T17:00:18Z) - Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines [64.62510681492994]
生成モデルはデータセットの基盤となる分布を学習し、それらは本質的に小さな摂動に対してより堅牢である。
MNISTデータセット上のBoltzmannマシンによる攻撃に対して、5%から72%の改良が見られる。
論文 参考訳(メタデータ) (2020-12-21T19:00:03Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
単一のロボットアームがピクセルからスパースリワード操作ポリシーを学習できることを示します。
デモは10回しかなく、単一のロボットアームがピクセルからスパースリワード操作のポリシーを学習できることを示しています。
論文 参考訳(メタデータ) (2020-12-14T22:18:39Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
提案手法は,従来の実演データとオンライン体験を組み合わせることで,スキルの素早い学習を可能にする。
以上の結果から,事前データを組み込むことで,ロボット工学を実践的な時間スケールまで学習するのに要する時間を短縮できることが示唆された。
論文 参考訳(メタデータ) (2020-06-16T17:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。