Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
- URL: http://arxiv.org/abs/2408.17258v2
- Date: Sat, 30 Nov 2024 12:13:01 GMT
- Title: Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
- Authors: Tong Nie, Junlin He, Yuewen Mei, Guoyang Qin, Guilong Li, Jian Sun, Wei Ma,
- Abstract summary: The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas.
Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities.
This paper formulates this problem as a transferable graph-temporal-based learning task.
Comprehensive empirical evaluation results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in accuracy, efficiency, and transferability.
- Score: 40.357070798871675
- License:
- Abstract: The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing issue that has yet to be sufficiently addressed is the joint estimation and prediction of city-wide delivery demand, as well as the generalization of the model to new cities. To this end, we formulate this problem as a transferable graph-based spatiotemporal learning task. First, an individual-collective message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models (LLMs), we extract general geospatial knowledge encodings from the unstructured locational data using the embedding generated by LLMs. Last, to encourage the cross-city generalization of the model, we integrate the encoding into the demand predictor in a transferable way. Comprehensive empirical evaluation results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in accuracy, efficiency, and transferability.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
Current data-driven models often struggle with data sparsity and the integration of diverse urban data sources.
We introduce a deep dynamic learning framework designed for traffic accident prediction.
It incorporates dual adaptive graph learning mechanisms that enable high-order cross-regional learning.
It also employs an advance attention mechanism to fuse multiple views of accident data and urban functional features.
arXiv Detail & Related papers (2024-07-24T21:10:34Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Modelling Urban Dynamics with Multi-Modal Graph Convolutional Networks [8.767281392253976]
We propose a novel deep learning framework which aims to better model the popularity and growth of urban venues.
We present our deep learning architecture which integrates both spatial and topological features into a temporal model which predicts the demand of a venue at the subsequent time-step.
Relative to state-of-the-art deep learning models, our model reduces the RSME by 28% in London and 13% in Paris.
arXiv Detail & Related papers (2021-04-29T20:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.