A Passive and Self-Characterizing Cross-Encoded Receiver for Reference-Frame-Independent Quantum Key Distribution
- URL: http://arxiv.org/abs/2408.17304v1
- Date: Fri, 30 Aug 2024 14:00:27 GMT
- Title: A Passive and Self-Characterizing Cross-Encoded Receiver for Reference-Frame-Independent Quantum Key Distribution
- Authors: Massimo Giacomin, Francesco B. L. Santagiustina, Giuseppe Vallone, Paolo Villoresi, Costantino Agnesi,
- Abstract summary: Quantum Key Distribution (QKD) promises to revolutionize the field of security in communication.
RFI-QKD aims to simplify QKD implementations by allowing to reduce the requirements of alignment on a shared reference frame.
We present a novel fully passive receiver for time-bin encoded RFI-QKD.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Key Distribution (QKD) promises to revolutionize the field of security in communication, with applications ranging from state secrets to personal data, making it a key player in the ongoing battle against cyber threats. Reference-Frame-Independent (RFI) QKD aims to simplify QKD implementations by allowing to reduce the requirements of alignment on a shared reference frame. This is done by performing two mutually unbiased measurements on the control states. In this work, we present a novel fully passive receiver for time-bin encoded RFI-QKD. Conversion of time-bin to polarization is employed to perform the required quantum measurement in a fully passive manner. Furthermore, to overcome experimental errors, we retrieved a complete description of our measurement apparatus by employing a recently introduced Quantum Detector Self-Characterization technique, without performing tomographic studies on the detection stage. In fact, the security analysis carried out in this work uses experimentally retrieved Positive Operator Valued Measurements, which consider our receiver defects, substituting the ideal expected operators and thus increasing the overall level of secrecy. Lastly, we conducted a proof-of-principle experiment that validated the feasibility of our method and its applicability to QKD applications.
Related papers
- Finite-size security of continuous-variable quantum key distribution with imperfect heterodyne measurement [0.0]
Continuous-variable quantum key distribution (CVQKD) using coherent states and heterodyne detection enables secure quantum communication based on technology that has large similarities to coherent optical telecommunication.
Here, we present a theoretical framework that rigorously accounts for imperfect heterodyne measurements arising from phase imbalances in the coherent (heterodyne) receiver.
We validate our approach experimentally on a CVQKD system with an imperfect coherent receiver, underscoring its potential for scalable, cost-effective CVQKD with photonic integrated receivers in which phase-imbalances naturally appear through manufacturing tolerances.
arXiv Detail & Related papers (2025-01-17T16:12:47Z) - Composable free-space continuous-variable quantum key distribution using discrete modulation [3.864405940022529]
Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication.
We present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels.
This will allow to expand CV QKD networks beyond the existing fiber backbone.
arXiv Detail & Related papers (2024-10-16T18:02:53Z) - Fully passive Measurement Device Independent Quantum Key Distribution [15.545098722427678]
Measurement-device-independent quantum key distribution (MDI-QKD) can resist all attacks on the detection devices.
One possible solution is to use the passive protocol to eliminate the side channels introduced by active modulators at the source.
We propose a fully passive MDI-QKD scheme that can protect the system from both side channels of source modulators and attacks on the measurement devices.
arXiv Detail & Related papers (2023-09-14T10:18:52Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements [0.2519906683279153]
Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
arXiv Detail & Related papers (2022-08-29T17:37:58Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Experimental measurement-device-independent type quantum key
distribution with flawed and correlated sources [14.143874849657317]
Security of quantum key distribution (QKD) is threatened by discrepancies between realistic devices and theoretical assumptions.
Here, we adopt the reference technique to prove security of an efficient four-phase measurement-device-independent QKD using laser pulses against potential source imperfections.
In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 253 bps with a 20 dB channel loss.
arXiv Detail & Related papers (2022-04-18T13:44:51Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.