Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements
- URL: http://arxiv.org/abs/2208.13754v3
- Date: Mon, 3 Jul 2023 16:55:26 GMT
- Title: Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements
- Authors: Michel Boyer, Gilles Brassard, Nicolas Godbout, Rotem Liss, St\'ephane
Virally
- Abstract summary: Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
- Score: 0.2519906683279153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum key distribution (QKD) protocols aim at allowing two parties to
generate a secret shared key. While many QKD protocols have been proven
unconditionally secure in theory, practical security analyses of experimental
QKD implementations typically do not take into account all possible loopholes,
and practical devices are still not fully characterized for obtaining tight and
realistic key rates. We present a simple method of computing secure key rates
for any practical implementation of discrete-variable QKD (which can also apply
to measurement-device-independent QKD), initially in the single-qubit lossless
regime, and we rigorously prove its unconditional security against any possible
attack. We hope our method becomes one of the standard tools used for
analysing, benchmarking, and standardizing all practical realizations of QKD.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Tight finite-key analysis for mode-pairing quantum key distribution [21.81489337632085]
We analyze the finite-key effect for the MP-QKD protocol with rigorous security proof against general attacks.
We propose a six-state MP-QKD protocol and analyze its finite-key effect.
arXiv Detail & Related papers (2023-02-27T02:35:52Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Security of quantum key distribution from generalised entropy
accumulation [2.1030878979833467]
We provide a formal framework for general quantum key distribution protocols.
We show that security against general attacks reduces to security against collective attacks.
Our proof relies on a recently developed information-theoretic tool called generalised entropy accumulation.
arXiv Detail & Related papers (2022-03-09T19:00:07Z) - Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution [1.2891210250935146]
We develop a finite-size security analysis against general attacks for general QKD protocols.
Our result shows that the finite-size key rate can surpass the linear key-rate bound in a realistic communication time.
arXiv Detail & Related papers (2021-11-16T09:10:56Z) - Security analysis method for practical quantum key distribution with
arbitrary encoding schemes [7.321809883860193]
We propose a security analysis method without restriction on encoding schemes.
We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol.
Our work has the potential to become a reference standard for the security analysis of practical QKD.
arXiv Detail & Related papers (2021-09-10T09:53:33Z) - Unbalanced-basis-misalignment tolerant measurement-device-independent
quantum key distribution [22.419105320267523]
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side.
Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced.
We present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations.
arXiv Detail & Related papers (2021-08-27T02:16:20Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.