Model-free Reinforcement Learning for Model-based Control: Towards Safe, Interpretable and Sample-efficient Agents
- URL: http://arxiv.org/abs/2507.13491v1
- Date: Thu, 17 Jul 2025 18:59:54 GMT
- Title: Model-free Reinforcement Learning for Model-based Control: Towards Safe, Interpretable and Sample-efficient Agents
- Authors: Thomas Banker, Ali Mesbah,
- Abstract summary: This work introduces model-based agents as a compelling alternative for control policy approximation.<n>These models can encode prior system knowledge to inform, constrain, and aid in explaining the agent's decisions.<n>We outline the benefits and challenges of learning model-based agents.
- Score: 6.9290255098776425
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Training sophisticated agents for optimal decision-making under uncertainty has been key to the rapid development of modern autonomous systems across fields. Notably, model-free reinforcement learning (RL) has enabled decision-making agents to improve their performance directly through system interactions, with minimal prior knowledge about the system. Yet, model-free RL has generally relied on agents equipped with deep neural network function approximators, appealing to the networks' expressivity to capture the agent's policy and value function for complex systems. However, neural networks amplify the issues of sample inefficiency, unsafe learning, and limited interpretability in model-free RL. To this end, this work introduces model-based agents as a compelling alternative for control policy approximation, leveraging adaptable models of system dynamics, cost, and constraints for safe policy learning. These models can encode prior system knowledge to inform, constrain, and aid in explaining the agent's decisions, while deficiencies due to model mismatch can be remedied with model-free RL. We outline the benefits and challenges of learning model-based agents -- exemplified by model predictive control -- and detail the primary learning approaches: Bayesian optimization, policy search RL, and offline strategies, along with their respective strengths. While model-free RL has long been established, its interplay with model-based agents remains largely unexplored, motivating our perspective on their combined potentials for sample-efficient learning of safe and interpretable decision-making agents.
Related papers
- An Intelligent Fault Self-Healing Mechanism for Cloud AI Systems via Integration of Large Language Models and Deep Reinforcement Learning [1.1149781202731994]
We propose an Intelligent Fault Self-Healing Mechanism (IFSHM) that integrates Large Language Model (LLM) and Deep Reinforcement Learning (DRL)<n>IFSHM aims to realize a fault recovery framework with semantic understanding and policy optimization capabilities in cloud AI systems.<n> Experimental results on the cloud fault injection platform show that compared with the existing DRL and rule methods, the IFSHM framework shortens the system recovery time by 37% with unknown fault scenarios.
arXiv Detail & Related papers (2025-06-09T04:14:05Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.<n>It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.<n>We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.