Joint Modelling Histology and Molecular Markers for Cancer Classification
- URL: http://arxiv.org/abs/2502.07979v1
- Date: Tue, 11 Feb 2025 21:52:32 GMT
- Title: Joint Modelling Histology and Molecular Markers for Cancer Classification
- Authors: Xiaofei Wang, Hanyu Liu, Yupei Zhang, Boyang Zhao, Hao Duan, Wanming Hu, Yonggao Mou, Stephen Price, Chao Li,
- Abstract summary: We introduce a novel digital pathology approach to jointly predict molecular markers and histology features.
Our method outperforms other state-of-the-art methods in classifying glioma, histology features and molecular markers.
- Score: 4.267476747447838
- License:
- Abstract: Cancers are characterized by remarkable heterogeneity and diverse prognosis. Accurate cancer classification is essential for patient stratification and clinical decision-making. Although digital pathology has been advancing cancer diagnosis and prognosis, the paradigm in cancer pathology has shifted from purely relying on histology features to incorporating molecular markers. There is an urgent need for digital pathology methods to meet the needs of the new paradigm. We introduce a novel digital pathology approach to jointly predict molecular markers and histology features and model their interactions for cancer classification. Firstly, to mitigate the challenge of cross-magnification information propagation, we propose a multi-scale disentangling module, enabling the extraction of multi-scale features from high-magnification (cellular-level) to low-magnification (tissue-level) whole slide images. Further, based on the multi-scale features, we propose an attention-based hierarchical multi-task multi-instance learning framework to simultaneously predict histology and molecular markers. Moreover, we propose a co-occurrence probability-based label correlation graph network to model the co-occurrence of molecular markers. Lastly, we design a cross-modal interaction module with the dynamic confidence constrain loss and a cross-modal gradient modulation strategy, to model the interactions of histology and molecular markers. Our experiments demonstrate that our method outperforms other state-of-the-art methods in classifying glioma, histology features and molecular markers. Our method promises to promote precise oncology with the potential to advance biomedical research and clinical applications. The code is available at https://github.com/LHY1007/M3C2
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
arXiv Detail & Related papers (2024-08-30T16:26:04Z) - Focus on Focus: Focus-oriented Representation Learning and Multi-view Cross-modal Alignment for Glioma Grading [15.492493684721175]
multimodal deep learning has achieved a promising performance in glioma grading.
We introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference.
Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading.
arXiv Detail & Related papers (2024-08-16T04:54:10Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - Multi-task Learning of Histology and Molecular Markers for Classifying
Diffuse Glioma [9.082753496844731]
We propose a hierarchical multi-task multi-instance learning framework to jointly predict histology and molecular markers.
We also propose a co-occurrence probability-based label correction graph network to model the co-occurrence of molecular markers.
Our experiments show that our method outperforms other state-of-the-art methods in classifying diffuse glioma.
arXiv Detail & Related papers (2023-03-26T23:00:00Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
We integrate whole slide pathology images, RNA-seq abundance, copy number variation, and mutation data from 5,720 patients across 14 major cancer types.
Our interpretable, weakly-supervised, multimodal deep learning algorithm is able to fuse these heterogeneous modalities for predicting outcomes.
We analyze morphologic and molecular markers responsible for prognostic predictions across all cancer types.
arXiv Detail & Related papers (2021-08-04T20:40:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.