Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training
- URL: http://arxiv.org/abs/2409.00005v1
- Date: Thu, 15 Aug 2024 11:39:23 GMT
- Title: Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training
- Authors: Shilong Fan, Zhenyu Liu, Xinyu Gu, Haozhen Li,
- Abstract summary: Large language models (LLMs) exhibit strong pattern recognition and reasoning abilities over complex sequences.
We introduce Csi-LLM, a novel LLM-powered downlink channel prediction technique that models variable-step historical sequences.
To ensure effective cross-modality application, we align the design and training of Csi-LLM with the processing of natural language tasks.
- Score: 3.2721332912474668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Downlink channel temporal prediction is a critical technology in massive multiple-input multiple-output (MIMO) systems. However, existing methods that rely on fixed-step historical sequences significantly limit the accuracy, practicality, and scalability of channel prediction. Recent advances have shown that large language models (LLMs) exhibit strong pattern recognition and reasoning abilities over complex sequences. The challenge lies in effectively aligning wireless communication data with the modalities used in natural language processing to fully harness these capabilities. In this work, we introduce Csi-LLM, a novel LLM-powered downlink channel prediction technique that models variable-step historical sequences. To ensure effective cross-modality application, we align the design and training of Csi-LLM with the processing of natural language tasks, leveraging the LLM's next-token generation capability for predicting the next step in channel state information (CSI). Simulation results demonstrate the effectiveness of this alignment strategy, with Csi-LLM consistently delivering stable performance improvements across various scenarios and showing significant potential in continuous multi-step prediction.
Related papers
- LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
6th generation (6G) mobile networks bring new challenges in supporting high-mobility communications.
We present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model.
Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS)
arXiv Detail & Related papers (2024-10-28T13:04:23Z) - Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Boosting Vision-Language Models with Transduction [12.281505126587048]
We present TransCLIP, a novel and computationally efficient transductive approach for vision-language models.
TransCLIP is applicable as a plug-and-play module on top of popular inductive zero- and few-shot models.
arXiv Detail & Related papers (2024-06-03T23:09:30Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
We introduce the Multi-Channel Data Fusion Network (MCDFN), a hybrid architecture that integrates CNN, Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU)
Our comparative benchmarking demonstrates that MCDFN outperforms seven other deep-learning models.
This research advances demand forecasting methodologies and offers practical guidelines for integrating MCDFN into supply chain systems.
arXiv Detail & Related papers (2024-05-24T14:30:00Z) - In-Context Learning for MIMO Equalization Using Transformer-Based
Sequence Models [44.161789477821536]
Large pre-trained sequence models have the capacity to carry out in-context learning (ICL)
In ICL, a decision on a new input is made via a direct mapping of the input and of a few examples from the given task.
We demonstrate via numerical results that transformer-based ICL has a threshold behavior.
arXiv Detail & Related papers (2023-11-10T15:09:04Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
We propose State Sequences Prediction via Fourier Transform (SPF), a novel method for learning expressive representations efficiently.
We theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity.
Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.
arXiv Detail & Related papers (2023-10-24T14:47:02Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
arXiv Detail & Related papers (2023-09-03T19:24:34Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.