論文の概要: Applying Deep Neural Networks to automate visual verification of manual bracket installations in aerospace
- arxiv url: http://arxiv.org/abs/2409.00006v1
- Date: Thu, 15 Aug 2024 11:58:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:50:41.140429
- Title: Applying Deep Neural Networks to automate visual verification of manual bracket installations in aerospace
- Title(参考訳): 深部ニューラルネットワークによる航空宇宙における手動ブラケット設置の視覚的検証
- Authors: John Oyekan, Liam Quantrill, Christopher Turner, Ashutosh Tiwari,
- Abstract要約: 本稿では,Siamese Neural Networkアーキテクチャに基づくディープラーニングに基づく自動視覚検査と検証アルゴリズムについて検討する。
我々は,複数の参照画像に対して単一のモデル投票を行うシームズニューラルネットワークに特有な新しい投票方式を開発した。
- 参考スコア(独自算出の注目度): 0.6562256987706128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we explore a deep learning based automated visual inspection and verification algorithm, based on the Siamese Neural Network architecture. Consideration is also given to how the input pairs of images can affect the performance of the Siamese Neural Network. The Siamese Neural Network was explored alongside Convolutional Neural Networks. In addition to investigating these model architectures, additional methods are explored including transfer learning and ensemble methods, with the aim of improving model performance. We develop a novel voting scheme specific to the Siamese Neural Network which sees a single model vote on multiple reference images. This differs from the typical ensemble approach of multiple models voting on the same data sample. The results obtained show great potential for the use of the Siamese Neural Network for automated visual inspection and verification tasks when there is a scarcity of training data available. The additional methods applied, including the novel similarity voting, are also seen to significantly improve the performance of the model. We apply the publicly available omniglot dataset to validate our approach. According to our knowledge, this is the first time a detailed study of this sort has been carried out in the automatic verification of installed brackets in the aerospace sector via Deep Neural Networks.
- Abstract(参考訳): 本研究では,Siamese Neural Networkアーキテクチャに基づくディープラーニングに基づく自動視覚検査・検証アルゴリズムについて検討する。
また、入力された画像のペアが、シームズニューラルネットワークの性能にどのように影響するかについても考察する。
シームズニューラルネットワークは畳み込みニューラルネットワークと共に探索された。
これらのモデルアーキテクチャの調査に加えて,モデル性能の向上を目的としたトランスファーラーニングやアンサンブル手法など,新たな手法が検討されている。
我々は,複数の参照画像に対して単一のモデル投票を行うシームズニューラルネットワークに特有な新しい投票方式を開発した。
これは、同じデータサンプルで投票する複数のモデルの典型的なアンサンブルアプローチとは異なる。
その結果、トレーニングデータが不足している場合に、自動視覚検査および検証タスクに、Siamese Neural Networkを使用する大きな可能性が示された。
新たな類似性投票を含む追加の手法も、モデルの性能を著しく改善すると考えられる。
我々は、我々のアプローチを検証するために、公開されているOmniglotデータセットを適用します。
我々の知る限り、Deep Neural Networksを介して航空宇宙セクターに設置されたブラケットの自動検証において、この種の詳細な研究が行われたのはこれが初めてである。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
活性化関数はディープニューラルネットワークの能力を決定する上で決定的な役割を果たす。
本稿では,ASU-CNNと呼ばれる畳み込みニューラルネットワークモデルを提案する。
ネットワークは、CIFAR-10の分類のためのトレーニングデータとテストデータの両方において有望な結果を得た。
論文 参考訳(メタデータ) (2023-05-28T16:52:25Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Similarity and Matching of Neural Network Representations [0.0]
我々は、深層ニューラルネットワークにおける表現の類似性を分析するために、Frankenstein博士と呼ばれるツールセットを使用します。
我々は、2つのトレーニングニューラルネットワークの与えられた層上でのアクティベーションを、縫合層で結合することで一致させることを目指している。
論文 参考訳(メタデータ) (2021-10-27T17:59:46Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Comparative evaluation of CNN architectures for Image Caption Generation [1.2183405753834562]
2つの人気のある画像キャプチャ生成フレームワークで17種類の畳み込みニューラルネットワークを評価した。
我々は、畳み込みニューラルネットワークのモデルの複雑さをパラメータ数で測定し、オブジェクト認識タスクにおけるモデルの精度は、必ずしも画像キャプション生成タスクの機能抽出に対する効果と相関するとは限らないことを観察する。
論文 参考訳(メタデータ) (2021-02-23T05:43:54Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Visual Pattern Recognition with on On-chip Learning: towards a Fully
Neuromorphic Approach [10.181725314550823]
ニューロモルフィックハードウェア上でのオンチップ学習による視覚パターン認識のためのスパイキングニューラルネットワーク(SNN)を提案する。
このネットワークは、ダイナミック・ビジョン・センサーによって知覚される水平と垂直のバーからなる単純な視覚パターンを学習することができることを示す。
認識中、ネットワークはパターンのアイデンティティを分類し、同時にその位置とスケールを推定する。
論文 参考訳(メタデータ) (2020-08-08T08:07:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。