論文の概要: GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network
- arxiv url: http://arxiv.org/abs/2409.00036v1
- Date: Sun, 18 Aug 2024 02:29:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:40:57.118627
- Title: GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network
- Title(参考訳): マルチUAVネットワークにおけるAoI管理のためのGNNを利用した有効部分観察MARL法
- Authors: Yuhao Pan, Xiucheng Wang, Zhiyao Xu, Nan Cheng, Wenchao Xu, Jun-jie Zhang,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)とQMIXアルゴリズムを組み合わせたQedgixフレームワークを提案する。
シミュレーションの結果,提案アルゴリズムはユーザの平均AoI値を低減しつつ,コンバージェンス速度を大幅に改善することを示した。
- 参考スコア(独自算出の注目度): 14.857267338331708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicles (UAVs), due to their low cost and high flexibility, have been widely used in various scenarios to enhance network performance. However, the optimization of UAV trajectories in unknown areas or areas without sufficient prior information, still faces challenges related to poor planning performance and low distributed execution. These challenges arise when UAVs rely solely on their own observation information and the information from other UAVs within their communicable range, without access to global information. To address these challenges, this paper proposes the Qedgix framework, which combines graph neural networks (GNNs) and the QMIX algorithm to achieve distributed optimization of the Age of Information (AoI) for users in unknown scenarios. The framework utilizes GNNs to extract information from UAVs, users within the observable range, and other UAVs within the communicable range, thereby enabling effective UAV trajectory planning. Due to the discretization and temporal features of AoI indicators, the Qedgix framework employs QMIX to optimize distributed partially observable Markov decision processes (Dec-POMDP) based on centralized training and distributed execution (CTDE) with respect to mean AoI values of users. By modeling the UAV network optimization problem in terms of AoI and applying the Kolmogorov-Arnold representation theorem, the Qedgix framework achieves efficient neural network training through parameter sharing based on permutation invariance. Simulation results demonstrate that the proposed algorithm significantly improves convergence speed while reducing the mean AoI values of users. The code is available at https://github.com/UNIC-Lab/Qedgix.
- Abstract(参考訳): 無人航空機(UAV)は低コストで柔軟性が高いため、ネットワーク性能を高めるために様々なシナリオで広く利用されている。
しかし、十分な事前情報のない未知の地域や地域でのUAV軌道の最適化は、計画性能の低さと分散実行の低さに関連する課題に直面している。
これらの課題は、UAVが自身の観測情報と通信可能な範囲内の他のUAVからの情報を、グローバルな情報にアクセスできることなく依存する場合に生じる。
これらの課題に対処するために、未知シナリオのユーザに対して、グラフニューラルネットワーク(GNN)とQMIXアルゴリズムを組み合わせたQedgixフレームワークを提案し、Age of Information(AoI)の分散最適化を実現する。
このフレームワークは、GNNを用いて、可観測範囲内のUAV、ユーザ、および通信可能な範囲内の他のUAVから情報を抽出し、効果的なUAV軌道計画を可能にする。
AoI指標の離散化と時間的特徴のため、QedgixフレームワークはQMIXを使用して、ユーザの平均AoI値に関して集中的なトレーニングと分散実行(CTDE)に基づいて、分散部分観測可能なマルコフ決定プロセス(Dec-POMDP)を最適化する。
AoIの観点からUAVネットワーク最適化問題をモデル化し、Kolmogorov-Arnold表現定理を適用することにより、Qedgixフレームワークは置換不変性に基づくパラメータ共有による効率的なニューラルネットワークトレーニングを実現する。
シミュレーションの結果,提案アルゴリズムはユーザの平均AoI値を低減しつつ,コンバージェンス速度を大幅に改善することを示した。
コードはhttps://github.com/UNIC-Lab/Qedgix.comで公開されている。
関連論文リスト
- DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
本稿では,マルチエージェント強化学習(MARL)と生成拡散モデル(GDM)を組み合わせた共同手法を提案する。
第2段階では,GDMのリバース・デノナイズ・プロセスを利用して,マルチエージェント・ディープ・Deep Deterministic Policy gradient(MADDPG)におけるアクタネットワークを置き換える新しいDNNタスク割当アルゴリズム(GDM-MADDPG)を導入する。
シミュレーションの結果,提案アルゴリズムは,経路計画,情報化時代(AoI),エネルギー消費,タスク負荷分散の観点から,ベンチマークに比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-11-13T02:41:02Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
高高度プラットフォーム(HAP)と無人航空機(UAV)からなる階層型空中コンピューティングフレームワークを開発する。
タスクスケジューリングは平均AoIを大幅に削減する。
電力割り当ては全ユーザに対して全送信電力を使用する場合と比較して平均AoIに限界効果があることが示されている。
論文 参考訳(メタデータ) (2023-05-01T11:52:15Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
本稿では,画像の分類を行うリソース制約付きUAV群に推論要求を分散する戦略を提案する。
画像の取得と最終的な決定の待ち時間を最小限に抑える最適化問題としてモデルを定式化する。
私たちは、利用可能なUAV間で最高のレイテンシを提供するレイヤ配置戦略を見つけるために、オンラインソリューション、すなわちDistInferenceを導入します。
論文 参考訳(メタデータ) (2021-07-09T19:47:02Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
無人航空機(UAV)は、広い地域をカバーし、困難で危険な目標地域にアクセスする能力のため、ここ数年で大きな関心を集めている。
コンピュータビジョンと機械学習の進歩により、UAVは幅広いソリューションやアプリケーションに採用されている。
ディープニューラルネットワーク(DNN)は、それらがオンボードで実行されるのを防ぐ、より深く複雑なモデルに向かって進んでいる。
論文 参考訳(メタデータ) (2021-05-23T20:19:43Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。