論文の概要: Developing an End-to-End Framework for Predicting the Social Communication Severity Scores of Children with Autism Spectrum Disorder
- arxiv url: http://arxiv.org/abs/2409.00158v1
- Date: Fri, 30 Aug 2024 14:43:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:37:47.896587
- Title: Developing an End-to-End Framework for Predicting the Social Communication Severity Scores of Children with Autism Spectrum Disorder
- Title(参考訳): 自閉症スペクトラム障害児の社会的コミュニケーションの重症度予測のためのエンドツーエンドフレームワークの開発
- Authors: Jihyun Mun, Sunhee Kim, Minhwa Chung,
- Abstract要約: 本稿では、生音声データから、ASDを持つ子どもの社会的コミュニケーションの重症度を自動的に予測するエンドツーエンドフレームワークを提案する。
ピアソン相関係数の0.6566と人間評価スコアを達成し,ASD評価のためのアクセシブルで客観的なツールとしての可能性を示した。
- 参考スコア(独自算出の注目度): 6.197934754799159
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autism Spectrum Disorder (ASD) is a lifelong condition that significantly influencing an individual's communication abilities and their social interactions. Early diagnosis and intervention are critical due to the profound impact of ASD's characteristic behaviors on foundational developmental stages. However, limitations of standardized diagnostic tools necessitate the development of objective and precise diagnostic methodologies. This paper proposes an end-to-end framework for automatically predicting the social communication severity of children with ASD from raw speech data. This framework incorporates an automatic speech recognition model, fine-tuned with speech data from children with ASD, followed by the application of fine-tuned pre-trained language models to generate a final prediction score. Achieving a Pearson Correlation Coefficient of 0.6566 with human-rated scores, the proposed method showcases its potential as an accessible and objective tool for the assessment of ASD.
- Abstract(参考訳): 自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、個人のコミュニケーション能力と社会的相互作用に大きな影響を及ぼす生涯状態である。
早期診断と介入は、基礎発達段階におけるALDの特徴的行動の重大な影響により重要である。
しかし、標準化された診断ツールの限界は、客観的かつ正確な診断方法の開発を必要としている。
本稿では、生音声データから、ASDを持つ子どもの社会的コミュニケーションの重症度を自動的に予測するエンドツーエンドフレームワークを提案する。
このフレームワークは、ASDを持つ子供たちの音声データを微調整した自動音声認識モデルと、最終予測スコアを生成するための微調整事前学習言語モデルとを組み込んだものである。
ピアソン相関係数の0.6566と人間評価スコアを達成し,ASD評価のためのアクセシブルで客観的なツールとしての可能性を示した。
関連論文リスト
- Script-centric behavior understanding for assisted autism spectrum disorder diagnosis [6.198128116862245]
本研究は,コンピュータビジョン技術と大規模言語モデル(LLM)を用いて,自閉症スペクトラム障害(ASD)を自動的に検出することに焦点を当てる。
我々のパイプラインは、動画コンテンツを文字の振る舞いを記述したスクリプトに変換し、大きな言語モデルの一般化性を活用してゼロショットまたは少数ショットでSDを検出する。
平均年齢24か月の小児におけるASDの診断精度は92.00%であり,教師あり学習法の性能は3.58%以上である。
論文 参考訳(メタデータ) (2024-11-14T13:07:19Z) - Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
本研究では,AutoEncoder-based Machine Learning (ML) 手法を用いて,ASD検出のための新しい半教師付きアプローチを提案する。
この目的に特化して設計された真剣なゲームを通じて手作業で収集したデータを利用する。
ゲーミフィケーションされたアプリケーションによって収集されたセンシティブなデータは、プライバシー漏洩の影響を受けやすいため、フェデレートラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-25T23:00:12Z) - Modality-Order Matters! A Novel Hierarchical Feature Fusion Method for CoSAm: A Code-Switched Autism Corpus [3.06952918690254]
本研究は,小児における早期ASD検出の促進を目的とした,新しい階層的特徴融合法を提案する。
この手法は、コードスイッチされた音声コーパスであるCoSAmを、ASDと一致した制御グループと診断された子供から収集する。
このデータセットは、ASDと診断された30人の子供から61人の音声記録と、神経型児から31人の音声記録を含んでおり、3歳から13歳の間である。
論文 参考訳(メタデータ) (2024-07-19T14:06:01Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
本研究は, 被験者と患者との対話の分析を通じて, 独特の音声パターンを識別するための包括的アプローチを提案する。
我々は,40の音声関連特徴を抽出し,周波数,ゼロクロス速度,エネルギー,スペクトル特性,メル周波数ケプストラル係数(MFCC),バランスに分類した。
分類モデルはASDと非ASDを区別することを目的としており、精度は87.75%である。
論文 参考訳(メタデータ) (2024-05-03T02:59:15Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Understanding Spoken Language Development of Children with ASD Using
Pre-trained Speech Embeddings [26.703275678213135]
自然言語サンプル(NLS)分析は,従来の手法を補完する有望な手法として注目されている。
本稿では,子どもの音声言語発達の自動評価を支援するために,音声処理技術の応用を提案する。
論文 参考訳(メタデータ) (2023-05-23T14:39:49Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
アルツハイマー病(AD)の早期診断は、予防ケアがさらなる進行を遅らせるのに不可欠である。
本稿では,DementiaBank Pitt コーパスをベースとした最新のコンバータに基づく音声認識システムの開発について述べる。
論文 参考訳(メタデータ) (2022-06-23T12:50:55Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
通常のRGBビデオから始まるボディーランゲージに基づく感情認識のための自動フレームワークを提案する。
心理学者との連携により,精神症状予測の枠組みを拡張した。
提案されたフレームワークの特定のアプリケーションドメインは限られた量のデータしか供給しないため、フレームワークは小さなトレーニングセットで動作するように設計されている。
論文 参考訳(メタデータ) (2020-10-30T18:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。