論文の概要: UDGS-SLAM : UniDepth Assisted Gaussian Splatting for Monocular SLAM
- arxiv url: http://arxiv.org/abs/2409.00362v1
- Date: Sat, 31 Aug 2024 06:18:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:08:42.494256
- Title: UDGS-SLAM : UniDepth Assisted Gaussian Splatting for Monocular SLAM
- Title(参考訳): UDGS-SLAM : 一眼的SLAMのための一眼レフ法
- Authors: Mostafa Mansour, Ahmed Abdelsalam, Ari Happonen, Jari Porras, Esa Rahtu,
- Abstract要約: 近年の単眼神経深度推定の進歩により、単眼SLAMのためのガウススプラッティングフレームワークにUniDepthを統合する研究が進められている。
本研究は,ガウススティングフレームワークにおける深度推定のためのRGB-Dセンサの不要な新しいアプローチであるUDGS-SLAMを提案する。
- 参考スコア(独自算出の注目度): 15.42410699032761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM.This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATERMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.
- Abstract(参考訳): 単眼神経深度推定の最近の進歩、特にUniDepthネットワークによって達成されたものは、単眼のSLAMのためのガウススプラッティングフレームワークにUniDepthを組み込む研究のきっかけとなっている。本研究では、ガウススプラッティングフレームワークにおける深度推定のためのRGB-Dセンサーの必要性を排除した新しいアプローチであるUDGS-SLAMを提示する。
UDGS-SLAMは推定深度の局所的な整合性を確保するために統計的フィルタリングを採用し、カメラ軌道とガウスシーンの表現パラメータを共同最適化する。
提案手法は,高忠実度レンダリング画像と低ATERMSEを実現する。
TUM RGB-Dデータセットを用いてUDGS-SLAMの性能を厳格に評価し,様々なシナリオにおいて優れた性能を示す。
さらに,設計選択の妥当性を検証し,異なるネットワークバックボーンエンコーダがシステム性能に与える影響について検討した。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
ガウススプラッティングと深さ推定を結合するDepthSplatを提案する。
まず,事前学習した単眼深度特徴を生かして,頑健な多眼深度モデルを提案する。
また,ガウス的スプラッティングは教師なし事前学習の目的として機能することを示す。
論文 参考訳(メタデータ) (2024-10-17T17:59:58Z) - Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering [47.879695094904015]
そこで本研究では,地上ロボット軌道データセットのための新しいビューレンダリングアルゴリズムであるMode-GSを提案する。
提案手法は,既存の3次元ガウススプラッティングアルゴリズムの限界を克服する目的で,アンカー付きガウススプラッターを用いている。
提案手法は,PSNR,SSIM,LPIPSの計測値に基づいて,自由軌道パターンを持つ地上環境におけるレンダリング性能を向上する。
論文 参考訳(メタデータ) (2024-10-06T23:01:57Z) - MotionGS : Compact Gaussian Splatting SLAM by Motion Filter [10.979138131565238]
NeRFベースのSLAMは急増しているが、3DGSベースのSLAMは希薄である。
本稿では, 深部視覚特徴, 二重選択, 3DGSを融合した新しい3DGSベースのSLAM手法を提案する。
論文 参考訳(メタデータ) (2024-05-18T00:47:29Z) - SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping [15.63276368052395]
ニューラルラジアンスフィールドSLAM(NeRF-SLAM)に適した,新しい粗い粒度追跡モデルを提案する。
既存の NeRF-SLAM システムは、従来の SLAM アルゴリズムに比べて、追跡性能が劣っている。
局所バンドル調整とグローバルバンドル調整の両方を実装し、ロバストな(粗大な)(KL正規化器)と正確な(KL正規化器)SLAMソリューションを生成する。
論文 参考訳(メタデータ) (2024-04-17T14:23:28Z) - CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field [46.8198987091734]
本稿では,新しい不確実性を考慮した3次元ガウス場に基づく高密度RGB-D SLAMシステム,すなわちCG-SLAMを提案する。
各種データセットの実験により、CG-SLAMは、最大15Hzの追従速度で優れた追従性能とマッピング性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-24T11:19:59Z) - High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization [8.845446246585215]
本稿では,3次元ガウススプラッティングに基づく高密度RGBD SLAMシステムを提案する。
近年のニューラルかつ並列に開発されたガウススプラッティング RGBD SLAM ベースラインと比較して,本手法は合成データセット Replica の最先端結果と実世界のデータセット TUM の競合結果を得る。
論文 参考訳(メタデータ) (2024-03-19T08:19:53Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
本稿では,視覚的並列追跡・マッピング(PTAM)システムに対するロバストなアプローチを提案する。
提案手法は,異種多モード視覚センサの強度を統一参照フレームに組み合わせたものである。
私たちの実装のリサーチベースのPython APIはGitHubで公開されています。
論文 参考訳(メタデータ) (2023-06-02T19:52:13Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
本稿では,モノクラーRGBD入力に対する高密度ニューラルネットワークの局所化とマッピング(SLAM)手法を提案する。
トラッキングとマッピングの両方が、同じポイントベースのニューラルシーン表現で実行可能であることを実証する。
論文 参考訳(メタデータ) (2023-04-09T16:48:26Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。