Breaking Down Financial News Impact: A Novel AI Approach with Geometric Hypergraphs
- URL: http://arxiv.org/abs/2409.00438v1
- Date: Sat, 31 Aug 2024 12:18:45 GMT
- Title: Breaking Down Financial News Impact: A Novel AI Approach with Geometric Hypergraphs
- Authors: Anoushka Harit, Zhongtian Sun, Jongmin Yu, Noura Al Moubayed,
- Abstract summary: In the fast-paced and volatile financial markets, accurately predicting stock movements based on financial news is critical for investors and analysts.
Traditional models often struggle to capture the intricate and dynamic relationships between news events and market reactions.
This paper introduces a novel approach leveraging Explainable Artificial Intelligence (XAI) to analyse the impact of financial news on market behaviours.
- Score: 9.618393813409266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the fast-paced and volatile financial markets, accurately predicting stock movements based on financial news is critical for investors and analysts. Traditional models often struggle to capture the intricate and dynamic relationships between news events and market reactions, limiting their ability to provide actionable insights. This paper introduces a novel approach leveraging Explainable Artificial Intelligence (XAI) through the development of a Geometric Hypergraph Attention Network (GHAN) to analyze the impact of financial news on market behaviours. Geometric hypergraphs extend traditional graph structures by allowing edges to connect multiple nodes, effectively modelling high-order relationships and interactions among financial entities and news events. This unique capability enables the capture of complex dependencies, such as the simultaneous impact of a single news event on multiple stocks or sectors, which traditional models frequently overlook. By incorporating attention mechanisms within hypergraphs, GHAN enhances the model's ability to focus on the most relevant information, ensuring more accurate predictions and better interpretability. Additionally, we employ BERT-based embeddings to capture the semantic richness of financial news texts, providing a nuanced understanding of the content. Using a comprehensive financial news dataset, our GHAN model addresses key challenges in financial news impact analysis, including the complexity of high-order interactions, the necessity for model interpretability, and the dynamic nature of financial markets. Integrating attention mechanisms and SHAP values within GHAN ensures transparency, highlighting the most influential factors driving market predictions. Empirical validation demonstrates the superior effectiveness of our approach over traditional sentiment analysis and time-series models.
Related papers
- Dynamic graph neural networks for enhanced volatility prediction in financial markets [0.0]
This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs.
By utilizing correlation-based and volatility indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions.
arXiv Detail & Related papers (2024-10-22T09:52:15Z) - MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU [15.232546605091818]
This paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU.
Experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics.
arXiv Detail & Related papers (2024-09-25T14:37:49Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive
and Dynamic Stock Investment Prediction [22.430266982219496]
Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed.
Our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods.
arXiv Detail & Related papers (2024-01-19T02:51:29Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction [14.056579711850578]
We propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series.
We conduct extensive experiments on the stock market in the United States and China.
arXiv Detail & Related papers (2023-05-09T11:17:46Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.