Advancing Machine Learning in Industry 4.0: Benchmark Framework for Rare-event Prediction in Chemical Processes
- URL: http://arxiv.org/abs/2409.00485v1
- Date: Sat, 31 Aug 2024 15:41:10 GMT
- Title: Advancing Machine Learning in Industry 4.0: Benchmark Framework for Rare-event Prediction in Chemical Processes
- Authors: Vikram Sudarshan, Warren D. Seider,
- Abstract summary: We introduce a novel and comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity.
We identify optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based predictive models to quantify committer probabilities as functions of key process variables (e.g., temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we introduce a novel and comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural Networks, and TabNet. This evaluation uses comprehensive performance metrics, such as: $\textit{RMSE}$, model training, testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.
Related papers
- Uncertainty measurement for complex event prediction in safety-critical systems [0.36832029288386137]
Complex events processing (CEP) uncertainty is critical for embedded and safety-critical systems.
This paper exemplifies how we can measure uncertainty for the perception and prediction of events.
We present and discuss our results, which are very promising within our field of research and work.
arXiv Detail & Related papers (2024-11-02T15:51:37Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Dynamic Model Agnostic Reliability Evaluation of Machine-Learning
Methods Integrated in Instrumentation & Control Systems [1.8978726202765634]
Trustworthiness of datadriven neural network-based machine learning algorithms is not adequately assessed.
In recent reports by the National Institute for Standards and Technology, trustworthiness in ML is a critical barrier to adoption.
We demonstrate a real-time model-agnostic method to evaluate the relative reliability of ML predictions by incorporating out-of-distribution detection on the training dataset.
arXiv Detail & Related papers (2023-08-08T18:25:42Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Machine Learning Methods for Spectral Efficiency Prediction in Massive
MIMO Systems [0.0]
We study several machine learning approaches to solve the problem of estimating the spectral efficiency (SE) value for a certain precoding scheme, preferably in the shortest possible time.
The best results in terms of mean average percentage error (MAPE) are obtained with gradient boosting over sorted features, while linear models demonstrate worse prediction quality.
We investigate the practical applicability of the proposed algorithms in a wide range of scenarios generated by the Quadriga simulator.
arXiv Detail & Related papers (2021-12-29T07:03:10Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.