Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities
- URL: http://arxiv.org/abs/2412.13529v1
- Date: Wed, 18 Dec 2024 06:13:49 GMT
- Title: Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities
- Authors: Jiaxing Qi, Chang Zeng, Zhongzhi Luan, Shaohan Huang, Shu Yang, Yao Lu, Bin Han, Hailong Yang, Depei Qian,
- Abstract summary: We introduce a unified framework, ourframework, for evaluating QML models in the context of LogAD.<n>State-of-the-art methods such as DeepLog, LogAnomaly, and LogRobust are included in our framework.<n>Our evaluation extends to factors critical to QML performance, such as specificity, the number of circuits, circuit design, and quantum state encoding.
- Score: 36.437593835024394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based anomaly detection (LogAD) is the main component of Artificial Intelligence for IT Operations (AIOps), which can detect anomalous that occur during the system on-the-fly. Existing methods commonly extract log sequence features using classical machine learning techniques to identify whether a new sequence is an anomaly or not. However, these classical approaches often require trade-offs between efficiency and accuracy. The advent of quantum machine learning (QML) offers a promising alternative. By transforming parts of classical machine learning computations into parameterized quantum circuits (PQCs), QML can significantly reduce the number of trainable parameters while maintaining accuracy comparable to classical counterparts. In this work, we introduce a unified framework, \ourframework{}, for evaluating QML models in the context of LogAD. This framework incorporates diverse log data, integrated QML models, and comprehensive evaluation metrics. State-of-the-art methods such as DeepLog, LogAnomaly, and LogRobust, along with their quantum-transformed counterparts, are included in our framework.Beyond standard metrics like F1 score, precision, and recall, our evaluation extends to factors critical to QML performance, such as specificity, the number of circuits, circuit design, and quantum state encoding. Using \ourframework{}, we conduct extensive experiments to assess the performance of these models and their quantum counterparts, uncovering valuable insights and paving the way for future research in QML model selection and design for LogAD.
Related papers
- Network Attack Traffic Detection With Hybrid Quantum-Enhanced Convolution Neural Network [9.466909402552844]
Quantum Machine Learning (QML) combines features of quantum computing and machine learning (ML)
This paper focuses on designing and proposing novel hybrid structures of Quantum Convolutional Neural Network (QCNN) to achieve the detection of malicious traffic.
arXiv Detail & Related papers (2025-04-29T05:23:27Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.
Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.
Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - On the relation between trainability and dequantization of variational quantum learning models [1.7999333451993955]
We study the relation between trainability and dequantization of variational quantum machine learning (QML)
We introduce recipes for building PQC-based QML models which are both trainable and nondequantizable.
Our work however does point toward a way forward for finding more general constructions, for which finding applications may become feasible.
arXiv Detail & Related papers (2024-06-11T08:59:20Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning [0.0]
Works in quantum machine learning (QML) over the past few years indicate that QML algorithms can function just as well as their classical counterparts.
This work aims to elucidate if it is possible to achieve some of QML's major reported benefits on classical machines by incorporating itsity.
arXiv Detail & Related papers (2023-05-17T13:44:25Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Structural risk minimization for quantum linear classifiers [0.0]
Quantum machine learning (QML) stands out as one of the typically highlighted candidates for quantum computing's near-term "killer application"
We investigate capacity measures of two closely related QML models called explicit and implicit quantum linear classifiers.
We identify that the rank and Frobenius norm of the observables used in the QML model closely control the model's capacity.
arXiv Detail & Related papers (2021-05-12T10:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.