Change-Aware Siamese Network for Surface Defects Segmentation under Complex Background
- URL: http://arxiv.org/abs/2409.00589v1
- Date: Sun, 1 Sep 2024 02:48:11 GMT
- Title: Change-Aware Siamese Network for Surface Defects Segmentation under Complex Background
- Authors: Biyuan Liu, Huaixin Chen, Huiyao Zhan, Sijie Luo, Zhou Huang,
- Abstract summary: We propose a change-aware Siamese network that solves the defect segmentation in a change detection framework.
A novel multi-class balanced contrastive loss is introduced to guide the Transformer-based encoder.
The difference presented by a distance map is then skip-connected to the change-aware decoder to assist in the location of both inter-class and out-of-class pixel-wise defects.
- Score: 0.6407952035735353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the eye-catching breakthroughs achieved by deep visual networks in detecting region-level surface defects, the challenge of high-quality pixel-wise defect detection remains due to diverse defect appearances and data scarcity. To avoid over-reliance on defect appearance and achieve accurate defect segmentation, we proposed a change-aware Siamese network that solves the defect segmentation in a change detection framework. A novel multi-class balanced contrastive loss is introduced to guide the Transformer-based encoder, which enables encoding diverse categories of defects as the unified class-agnostic difference between defect and defect-free images. The difference presented by a distance map is then skip-connected to the change-aware decoder to assist in the location of both inter-class and out-of-class pixel-wise defects. In addition, we proposed a synthetic dataset with multi-class liquid crystal display (LCD) defects under a complex and disjointed background context, to demonstrate the advantages of change-based modeling over appearance-based modeling for defect segmentation. In our proposed dataset and two public datasets, our model achieves superior performances than the leading semantic segmentation methods, while maintaining a relatively small model size. Moreover, our model achieves a new state-of-the-art performance compared to the semi-supervised approaches in various supervision settings.
Related papers
- Robust Network Learning via Inverse Scale Variational Sparsification [55.64935887249435]
We introduce an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation.
Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features.
We show the efficacy of our approach through enhanced robustness against various noise types.
arXiv Detail & Related papers (2024-09-27T03:17:35Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Investigating Shift Equivalence of Convolutional Neural Networks in
Industrial Defect Segmentation [3.843350895842836]
In industrial defect segmentation tasks, output consistency (also referred to equivalence) of the model is often overlooked.
A novel pair of down/upsampling layers called component attention polyphase sampling (CAPS) is proposed as a replacement for the conventional sampling layers in CNNs.
The experimental results on the micro surface defect (MSD) dataset and four real-world industrial defect datasets demonstrate that the proposed method exhibits higher equivalence and segmentation performance.
arXiv Detail & Related papers (2023-09-29T00:04:47Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - Adapting the Hypersphere Loss Function from Anomaly Detection to Anomaly
Segmentation [1.9458156037869137]
We propose an incremental improvement to Fully Convolutional Data Description (FCDD)
FCDD is an adaptation of the one-class classification approach from anomaly detection to image anomaly segmentation (a.k.a. anomaly localization)
We analyze its original loss function and propose a substitute that better resembles its predecessor, the Hypersphere (HSC)
arXiv Detail & Related papers (2023-01-23T18:06:35Z) - Deep Learning based Defect classification and detection in SEM images: A
Mask R-CNN approach [2.7180863515048674]
We have demonstrated the application of Mask-RCNN (Regional Convolutional Neural Network), a deep-learning algorithm for computer vision.
We are aiming at detecting and segmenting different types of inter-class defect patterns such as bridge, break, and line collapse.
arXiv Detail & Related papers (2022-11-03T23:26:40Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - MLMA-Net: multi-level multi-attentional learning for multi-label object
detection in textile defect images [0.0]
This paper proposes a multi-level, multi-attentional deep learning network (MLMA-Net) to detect multi-label defects in textile images.
The results show that the network extracts more distinctive features and has better performance than the state-of-the-art approaches on the real-world industrial dataset.
arXiv Detail & Related papers (2021-01-31T04:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.