SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
- URL: http://arxiv.org/abs/2506.08997v1
- Date: Tue, 10 Jun 2025 17:16:00 GMT
- Title: SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
- Authors: Fabian Immel, Jan-Hendrik Pauls, Richard Fehler, Frank Bieder, Jonas Merkert, Christoph Stiller,
- Abstract summary: High definition (HD) maps offer a promising solution, but their high maintenance cost poses a barrier to scalable deployment.<n>We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps.<n> Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP.
- Score: 5.959152791978571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction [65.4151284975348]
OpenSatMap is a fine-grained, high-resolution satellite dataset for large-scale map construction.
By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
arXiv Detail & Related papers (2024-10-30T17:56:02Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.<n>Online construction of HD maps using on-board sensors has emerged as a promising solution.<n>This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
We propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception.
The historicalized map can be easily constructed from past predicted vectorized results and provides valuable complementary information.
HRMapNet can be integrated with most online vectorized map perception methods.
arXiv Detail & Related papers (2024-09-01T05:22:33Z) - Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps [14.535963852751635]
We focus on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations.
A key finding is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders.
Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP)
arXiv Detail & Related papers (2024-08-01T19:39:55Z) - P-MapNet: Far-seeing Map Generator Enhanced by both SDMap and HDMap Priors [33.73570824028748]
We present P-MapNet, in which the letter P highlights the fact that we focus on incorporating map priors to improve model performance.
Our attention-based architecture adaptively attends to relevant SDMap skeletons and significantly improves performance.
P-MapNet is a far-seeing solution that brings larger improvements on longer ranges.
arXiv Detail & Related papers (2024-03-15T17:59:53Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
We show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors.
We design a single stage detector that extracts geometric and semantic features from the HD maps.
As maps might not be available everywhere, we also propose a map prediction module that estimates the map on the fly from raw LiDAR data.
arXiv Detail & Related papers (2020-12-21T21:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.