論文の概要: Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach
- arxiv url: http://arxiv.org/abs/2409.00644v1
- Date: Sun, 1 Sep 2024 07:34:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:09:07.846473
- Title: Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach
- Title(参考訳): 知識データ融合指向トラフィック状態推定:確率物理学インフォームドディープラーニングアプローチ
- Authors: Ting Wang, Ye Li, Rongjun Cheng, Guojian Zou, Takao Dantsujic, Dong Ngoduy,
- Abstract要約: 本研究では,交通状態推定のための物理インフォームドディープラーニング(SPIDL)を提案する。
SPIDLの主な貢献は、ニューラルネットワークトレーニング中の決定論的モデルにおける1対1の速度密度関係に起因する"過度に集中的なガイダンス"に対処することにある。
実世界のデータセットにおける実験から,提案したSPIDLモデルがスパースデータシナリオにおける正確なトラフィック状態推定を実現することが示唆された。
- 参考スコア(独自算出の注目度): 12.08072226345806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed deep learning (PIDL)-based models have recently garnered remarkable success in traffic state estimation (TSE). However, the prior knowledge used to guide regularization training in current mainstream architectures is based on deterministic physical models. The drawback is that a solely deterministic model fails to capture the universally observed traffic flow dynamic scattering effect, thereby yielding unreliable outcomes for traffic control. This study, for the first time, proposes stochastic physics-informed deep learning (SPIDL) for traffic state estimation. The idea behind such SPIDL is simple and is based on the fact that a stochastic fundamental diagram provides the entire range of possible speeds for any given density with associated probabilities. Specifically, we select percentile-based fundamental diagram and distribution-based fundamental diagram as stochastic physics knowledge, and design corresponding physics-uninformed neural networks for effective fusion, thereby realizing two specific SPIDL models, namely \text{$\alpha$}-SPIDL and \text{$\cal B$}-SPIDL. The main contribution of SPIDL lies in addressing the "overly centralized guidance" caused by the one-to-one speed-density relationship in deterministic models during neural network training, enabling the network to digest more reliable knowledge-based constraints.Experiments on the real-world dataset indicate that proposed SPIDL models achieve accurate traffic state estimation in sparse data scenarios. More importantly, as expected, SPIDL models reproduce well the scattering effect of field observations, demonstrating the effectiveness of fusing stochastic physics model knowledge with deep learning frameworks.
- Abstract(参考訳): 近年,物理インフォームド・ディープ・ラーニング(PIDL)に基づくモデルが交通状態推定(TSE)において顕著な成功を収めている。
しかし、現在の主流アーキテクチャにおける正規化トレーニングを導くための事前知識は、決定論的物理モデルに基づいている。
欠点は、単項決定論的モデルが普遍的に観察される交通流のダイナミック散乱効果を捉えることに失敗し、それによって交通制御に対する信頼性の低い結果が得られることである。
本研究は,交通状態推定のための確率物理学情報深層学習(SPIDL)を初めて提案する。
そのようなSPIDLの背景にある考え方は単純であり、確率的基本図が関連する確率を持つ任意の密度に対して可能な速度の全範囲を提供するという事実に基づいている。
具体的には、パーセンタイルに基づく基本図と分布に基づく基本図を確率物理学の知識として選択し、それに対応する物理非形式ニューラルネットワークを効果的融合のために設計し、それによって2つの特定のSPIDLモデル、すなわち \text{$\alpha$}-SPIDLと \text{$\cal B$}-SPIDLを実現する。
SPIDLの主な貢献は、ニューラルネットワークトレーニング中の決定論的モデルにおける1対1の速度密度関係に起因する"過度に集中的なガイダンス"に対処することであり、ネットワークがより信頼性の高い知識ベースの制約を消化できるようにする。
より重要なのは、SPIDLモデルがフィールド観測の散乱効果をうまく再現し、深層学習フレームワークを用いた確率的物理モデル知識の融合の有効性を実証することである。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Quantifying Uncertainty In Traffic State Estimation Using Generative
Adversarial Networks [4.737519767218666]
本稿では, 生成逆数ネットワークに基づく物理インフォームドディープラーニング(PIDL)を用いた交通状態推定(TSE)の不確かさの定量化を目的とする。
2つの物理モデル、Lighthill-Whitham-Richards (LWR) とAw-Rascle-Zhang (ARZ) がPhysGANの物理成分として比較される。
その結果,ARZベースのPhysGANはLWRベースのPhysGANよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-06-19T08:10:15Z) - TrafficFlowGAN: Physics-informed Flow based Generative Adversarial
Network for Uncertainty Quantification [4.215251065887861]
動的システムの不確実性定量化(UQ)のための物理インフォームドフローベース生成逆ネットワーク(GAN)であるTrafficFlowGANを提案する。
このフローモデルは、データ可能性の最大化と、畳み込み判別器を騙すことができる合成データを生成するために訓練される。
我々の知る限りでは、UQ問題に対するフロー、GAN、PIDLの統合を最初に提案します。
論文 参考訳(メタデータ) (2022-06-19T03:35:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - A Physics-Informed Deep Learning Paradigm for Traffic State Estimation
and Fundamental Diagram Discovery [3.779860024918729]
本稿では,基礎図形学習器(PIDL+FDL)を用いた物理インフォームド深層学習という,改良されたパラダイムに寄与する。
PIDL+FDLはML用語をモデル駆動コンポーネントに統合し、基本図(FD)の機能形式、すなわち交通密度から流れや速度へのマッピングを学ぶ。
PIDL+FDLを用いて、人気のある1次・2次トラフィックフローモデルの解法とFD関係の再構築を行う。
論文 参考訳(メタデータ) (2021-06-06T14:54:32Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
物理モデルによるニューラルネットワークに基づくカーフォローモデルの開発を行っています。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
論文 参考訳(メタデータ) (2020-12-24T18:04:08Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。