論文の概要: A Physics-Informed Deep Learning Paradigm for Car-Following Models
- arxiv url: http://arxiv.org/abs/2012.13376v2
- Date: Fri, 25 Dec 2020 22:56:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 11:28:02.314430
- Title: A Physics-Informed Deep Learning Paradigm for Car-Following Models
- Title(参考訳): 自動車追従モデルのための物理インフォームドディープラーニングパラダイム
- Authors: Zhaobin Mo, Xuan Di, Rongye Shi
- Abstract要約: 物理モデルによるニューラルネットワークに基づくカーフォローモデルの開発を行っています。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
- 参考スコア(独自算出の注目度): 3.093890460224435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Car-following behavior has been extensively studied using physics-based
models, such as the Intelligent Driver Model. These models successfully
interpret traffic phenomena observed in the real-world but may not fully
capture the complex cognitive process of driving. Deep learning models, on the
other hand, have demonstrated their power in capturing observed traffic
phenomena but require a large amount of driving data to train. This paper aims
to develop a family of neural network based car-following models that are
informed by physics-based models, which leverage the advantage of both
physics-based (being data-efficient and interpretable) and deep learning based
(being generalizable) models. We design physics-informed deep learning for
car-following (PIDL-CF) architectures encoded with two popular physics-based
models - IDM and OVM, on which acceleration is predicted for four traffic
regimes: acceleration, deceleration, cruising, and emergency braking. Two types
of PIDL-CFM problems are studied, one to predict acceleration only and the
other to jointly predict acceleration and discover model parameters. We also
demonstrate the superior performance of PIDL with the Next Generation
SIMulation (NGSIM) dataset over baselines, especially when the training data is
sparse. The results demonstrate the superior performance of neural networks
informed by physics over those without. The developed PIDL-CF framework holds
the potential for system identification of driving models and for the
development of driving-based controls for automated vehicles.
- Abstract(参考訳): 自動車追従挙動は、インテリジェントドライバモデルのような物理モデルを用いて広く研究されている。
これらのモデルは現実世界で観測される交通現象をうまく解釈するが、運転の複雑な認知過程を完全に捉えることはできない。
一方、ディープラーニングモデルは、観測された交通現象を捉える能力を示しているが、トレーニングには大量の運転データを必要とする。
本稿では、物理モデル(データ効率および解釈可能)とディープラーニングモデル(一般化可能)の両方の利点を生かした、物理モデルから情報を得たニューラルネットワークに基づくカーフォローモデルの一群を開発することを目的とする。
我々は,自動車追従(PIDL-CF)アーキテクチャを2つの物理モデル - IDMとOVM - で符号化した物理インフォームドディープラーニングを設計し,加速,減速,巡航,緊急ブレーキの4つの交通系に対して加速を予測した。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
また,次世代シミュレーション(ngsim)データセットがベースライン上,特にトレーニングデータがスパースする場合において,pidlの優れた性能を示す。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
開発したPIDL-CFフレームワークは、駆動モデルのシステム識別と、自動車両の駆動制御の開発の可能性を秘めている。
関連論文リスト
- Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach [12.08072226345806]
本研究では,交通状態推定のための物理インフォームドディープラーニング(SPIDL)を提案する。
SPIDLの主な貢献は、ニューラルネットワークトレーニング中の決定論的モデルにおける1対1の速度密度関係に起因する"過度に集中的なガイダンス"に対処することにある。
実世界のデータセットにおける実験から,提案したSPIDLモデルがスパースデータシナリオにおける正確なトラフィック状態推定を実現することが示唆された。
論文 参考訳(メタデータ) (2024-09-01T07:34:40Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
自動運転技術の継続的な進化には、多様なダイナミックな交通環境に適応できる自動車追従モデルが必要である。
従来の学習ベースのモデルは、連続的な学習能力の欠如により、目に見えないトラフィックパターンに遭遇する際のパフォーマンス低下に悩まされることが多い。
本稿では,この制限に対処する連続学習に基づく新しい車追従モデルを提案する。
論文 参考訳(メタデータ) (2024-07-17T06:32:52Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction [5.7215490229343535]
PERLは、トラフィック状態予測のための物理とデータ駆動方式の長所を統合する。
物理モデルに固有の解釈可能性を保持し、データ要求を減らした。
PERLは、物理モデル、データ駆動モデル、PINNモデルと比較して、小さなデータセットでより良い予測を実現する。
論文 参考訳(メタデータ) (2023-09-26T21:41:45Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - A Physics-Informed Deep Learning Paradigm for Traffic State Estimation
and Fundamental Diagram Discovery [3.779860024918729]
本稿では,基礎図形学習器(PIDL+FDL)を用いた物理インフォームド深層学習という,改良されたパラダイムに寄与する。
PIDL+FDLはML用語をモデル駆動コンポーネントに統合し、基本図(FD)の機能形式、すなわち交通密度から流れや速度へのマッピングを学ぶ。
PIDL+FDLを用いて、人気のある1次・2次トラフィックフローモデルの解法とFD関係の再構築を行う。
論文 参考訳(メタデータ) (2021-06-06T14:54:32Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。