A Real-time Instanton Approach to Quantum Activation
- URL: http://arxiv.org/abs/2409.00681v1
- Date: Sun, 1 Sep 2024 09:56:33 GMT
- Title: A Real-time Instanton Approach to Quantum Activation
- Authors: Chang-Woo Lee, Paul Brookes, Kee-Su Park, Marzena H. SzymaĆska, Eran Ginossar,
- Abstract summary: Driven-dissipative nonlinear systems exhibit rich critical behavior, related to bifurcation, bistability and switching.
We show that an instanton approach within Keldysh field theory can provide a deep insight into such phenomena.
Being set up in the framework of Keldysh coherent states path integrals, our approach opens the possibility of studying quantum activation in many-body systems.
- Score: 1.6008229267455227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driven-dissipative nonlinear systems exhibit rich critical behavior, related to bifurcation, bistability and switching, which underlie key phenomena in areas ranging from physics, chemistry and biology to social sciences and economics. The importance of rare fluctuations leading to a dramatic jump between two very distinct states, such as survival and extinction in population dynamics, success and bankruptcy in economics and the occurrence of earthquakes or of epileptic seizures, have been already established. In the quantum domain, switching is of importance in both chemical reactions and the devices used in quantum state detection and amplification. In particular, the simplest driven single oscillator model serves as an insightful starting point. Here we describe switching induced by quantum fluctuations and illustrate that an instanton approach within Keldysh field theory can provide a deep insight into such phenomena. We provide a practical recipe to compute the switching rates semi-analytically, which agrees remarkably well with exact solutions across a wide domain of drive amplitudes spanning many orders of magnitude. Being set up in the framework of Keldysh coherent states path integrals, our approach opens the possibility of studying quantum activation in many-body systems where other approaches are inapplicable.
Related papers
- Quantum ergodicity and scrambling in quantum annealers [0.0]
We show that the unitary evolution operator describing the complete dynamics of quantum annealers is typically highly quantum chaotic.
We observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling.
arXiv Detail & Related papers (2024-11-19T16:34:35Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Reaction dynamics with qubit-efficient momentum-space mapping [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We consider a qubit-efficient mapping on a lattice, which can be efficiently performed using momentum-space basis states.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Operational Metric for Quantum Chaos and the Corresponding
Spatiotemporal Entanglement Structure [0.0]
We demand that the future state of a many-body, isolated quantum system is sensitive to past multitime operations on a small subpart of that system.
Our work paves the way to systematically study many-body dynamical phenomena like Many-Body, measurement-Lo phase transitions, and Floquet dynamics.
arXiv Detail & Related papers (2022-10-26T18:00:01Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Bohm's quantum "non-mechanics": An alternative quantum theory with its
own ontology? [0.0]
Bohmian mechanics allows us to establish a direct link between the dynamics exhibited by quantum systems and the local variations of the quantum phase associated with their state.
This goes beyond the passive role typically assigned to this field in Bohmian mechanics, where traditionally trajectories and quantum potentials have received more attention instead.
arXiv Detail & Related papers (2021-05-13T09:31:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.