Heterogeneous Graph Structure Learning through the Lens of Data-generating Processes
- URL: http://arxiv.org/abs/2503.08760v1
- Date: Tue, 11 Mar 2025 16:14:53 GMT
- Title: Heterogeneous Graph Structure Learning through the Lens of Data-generating Processes
- Authors: Keyue Jiang, Bohan Tang, Xiaowen Dong, Laura Toni,
- Abstract summary: Inferring the graph structure from observed data is a key task in graph machine learning.<n>This paper introduces the first approach for heterogeneous graph structure learning (HGSL)
- Score: 11.774563966512709
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inferring the graph structure from observed data is a key task in graph machine learning to capture the intrinsic relationship between data entities. While significant advancements have been made in learning the structure of homogeneous graphs, many real-world graphs exhibit heterogeneous patterns where nodes and edges have multiple types. This paper fills this gap by introducing the first approach for heterogeneous graph structure learning (HGSL). To this end, we first propose a novel statistical model for the data-generating process (DGP) of heterogeneous graph data, namely hidden Markov networks for heterogeneous graphs (H2MN). Then we formalize HGSL as a maximum a-posterior estimation problem parameterized by such DGP and derive an alternating optimization method to obtain a solution together with a theoretical justification of the optimization conditions. Finally, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate that our proposed method excels in learning structure on heterogeneous graphs in terms of edge type identification and edge weight recovery.
Related papers
- When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels.
We define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem.
arXiv Detail & Related papers (2024-09-01T10:25:06Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Heterogeneous Graph Contrastive Learning with Spectral Augmentation [15.231689595121553]
This paper introduces a spectral-enhanced graph contrastive learning model (SHCL) for the first time in heterogeneous graph neural networks.
The proposed model learns an adaptive topology augmentation scheme through the heterogeneous graph itself.
Experimental results on multiple real-world datasets demonstrate substantial advantages of the proposed model.
arXiv Detail & Related papers (2024-06-30T14:20:12Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Learning to Learn Graph Topologies [27.782971146122218]
We learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O)
The model is trained in an end-to-end fashion with pairs of node data and graph samples.
Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
arXiv Detail & Related papers (2021-10-19T08:42:38Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Heterogeneous Graph Transformer [49.675064816860505]
Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs.
To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT.
To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training.
arXiv Detail & Related papers (2020-03-03T04:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.