論文の概要: Abstaining Machine Learning -- Philosophical Considerations
- arxiv url: http://arxiv.org/abs/2409.00706v1
- Date: Sun, 1 Sep 2024 12:25:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 12:52:28.632570
- Title: Abstaining Machine Learning -- Philosophical Considerations
- Title(参考訳): 機械学習の達成 -哲学的考察-
- Authors: Daniela Schuster,
- Abstract要約: 本稿では機械学習(ML)の分野と哲学の関連性を確立する。
特定のタスクに対して中立応答を提供することのできる、特定の種類のMLシステムについて調査する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted on how abstention in the different machine learning system types aligns with the epistemological counterpart of suspended judgment, addressing both the nature of suspension and its normative profile. Additionally, a philosophical analysis is suggested on the autonomy and explainability of the abstaining response. It is argued, specifically, that one of the distinguished types of abstaining systems is preferable as it aligns more closely with our criteria for suspended judgment. Moreover, it is better equipped to autonomously generate abstaining outputs and offer explanations for abstaining outputs when compared to the other type.
- Abstract(参考訳): 本稿では、機械学習(ML)の分野と、中立に振る舞う現象に関する哲学の関連性を確立する。
哲学的な観点からはまだ研究されていない、特定のタスクに対して中立的な応答を提供することのできる、特定の種類のMLシステムについて検討する。
本稿では,様々な機械学習システムを紹介し説明し,それらを異なるタイプに分類する。
各種機械学習システムにおける禁忌が,停止判断の認識的側面とどのように一致しているかを考察し,停止の性質と規範的プロファイルの両方に対処する。
さらに、停止応答の自律性と説明可能性について、哲学的な分析が提案されている。
特に, 停留判断基準とより緊密に整合していることから, 留置システムの特徴ある1つが好ましいと論じられている。
さらに、他のタイプと比較して、アウトプットを自律的に生成し、アウトプットを停止するための説明を提供する。
関連論文リスト
- Combining Machine Learning and Ontology: A Systematic Literature Review [0.0]
我々は、機械学習と体系的推論の統合を調査する記事のレビューを行った。
目的は、インダクティブ推論(私たちによって実行された)を人工知能システムに組み込む技術を特定することである。
論文 参考訳(メタデータ) (2024-01-15T14:56:04Z) - A Classification of Feedback Loops and Their Relation to Biases in
Automated Decision-Making Systems [0.0]
MLに基づく意思決定パイプラインにおけるフィードバックループのタイプについて検討する。
フィードバックループの存在は、MLバイアスを永続的に、強化し、あるいは軽減することができる。
論文 参考訳(メタデータ) (2023-05-10T11:15:22Z) - Perspectives on Large Language Models for Relevance Judgment [56.935731584323996]
大型言語モデル(LLM)は、関連判断を支援することができると主張している。
自動判定が検索システムの評価に確実に利用できるかどうかは不明である。
論文 参考訳(メタデータ) (2023-04-13T13:08:38Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
本稿では,データサンプルのコレクション間でラベルを共同で推論する手法を提案する。
異なる予測子を後部とする生成モデルの存在を暗黙的に仮定することにより、弱い信念の下での学習を可能にする訓練目標を導出する。
論文 参考訳(メタデータ) (2022-02-28T18:09:44Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
既存の自己指導型学習手法は,(1)どの特徴が分離されるべきかを明確に示すこと,あるいは(2)どの特徴が閉じるべきかを明確に示すこと,のいずれかのプリテキストタスクを用いて学習する。
本研究では,識別・調整手法の正の側面を組み合わせて,上記の課題に対処するハイブリッド手法を設計する。
本手法は,識別的予測タスクによってそれぞれ反発とアトラクションのメカニズムを明確に特定し,ペアビュー間の相互情報を同時に最大化する。
確立された9つのベンチマーク実験により,提案モデルが自己監督と移動の既成結果より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-08-19T09:07:41Z) - The zoo of Fairness metrics in Machine Learning [62.997667081978825]
近年,機械学習(ML)と自動意思決定における公平性の問題が注目されている。
MLにおける公平性の定義の多様さが提案され、人口の個人に影響を与える状況において「公正な決定」とは何かという異なる概念が検討されている。
本研究では、この定義の動物園からある程度の順序付けを試みる。
論文 参考訳(メタデータ) (2021-06-01T13:19:30Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Abduction and Argumentation for Explainable Machine Learning: A Position
Survey [2.28438857884398]
本稿では, 推論の2つの原則形式として, 帰納法と論証法を提案する。
機械学習の中で彼らが果たせる基本的な役割を具体化します。
論文 参考訳(メタデータ) (2020-10-24T13:23:44Z) - Counterfactual Explanations for Machine Learning: A Review [5.908471365011942]
機械学習における対実的説明に関する研究をレビューし、分類する。
機械学習における対実的説明可能性に対する現代のアプローチは、多くの国で確立された法的教義と結びついている。
論文 参考訳(メタデータ) (2020-10-20T20:08:42Z) - Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning [9.887110107270196]
最近の研究は、ブラックボックスモデルの理解と監視のために、局所的な説明と活発な学習を組み合わせるという約束を実証している。
ここでは、特定の条件下では、これらのアルゴリズムが学習されるモデルの質を誤って表現する可能性があることを示す。
説明的指導型学習を導入することで、この物語バイアスに対処する。
論文 参考訳(メタデータ) (2020-07-20T11:51:31Z) - On Consequentialism and Fairness [64.35872952140677]
機械学習におけるフェアネスの共通定義について、逐次的批判を行う。
学習とランダム化の問題に関するより広範な議論で締めくくります。
論文 参考訳(メタデータ) (2020-01-02T05:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。