A Critical Analysis on Machine Learning Techniques for Video-based Human Activity Recognition of Surveillance Systems: A Review
- URL: http://arxiv.org/abs/2409.00731v1
- Date: Sun, 1 Sep 2024 14:43:57 GMT
- Title: A Critical Analysis on Machine Learning Techniques for Video-based Human Activity Recognition of Surveillance Systems: A Review
- Authors: Shahriar Jahan, Roknuzzaman, Md Robiul Islam,
- Abstract summary: Upsurging abnormal activities in crowded locations urges the necessity for an intelligent surveillance system.
Video-based human activity recognition has intrigued many researchers with its pressing issues.
This paper provides a critical survey of video-based Human Activity Recognition (HAR) techniques.
- Score: 1.3693860189056777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Upsurging abnormal activities in crowded locations such as airports, train stations, bus stops, shopping malls, etc., urges the necessity for an intelligent surveillance system. An intelligent surveillance system can differentiate between normal and suspicious activities from real-time video analysis that will enable to take appropriate measures regarding the level of an anomaly instantaneously and efficiently. Video-based human activity recognition has intrigued many researchers with its pressing issues and a variety of applications ranging from simple hand gesture recognition to crucial behavior recognition in a surveillance system. This paper provides a critical survey of video-based Human Activity Recognition (HAR) techniques beginning with an examination of basic approaches for detecting and recognizing suspicious behavior followed by a critical analysis of machine learning and deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Hidden Markov Model (HMM), K-means Clustering etc. A detailed investigation and comparison are done on these learning techniques on the basis of feature extraction techniques, parameter initialization, and optimization algorithms, accuracy, etc. The purpose of this review is to prioritize positive schemes and to assist researchers with emerging advancements in this field's future endeavors. This paper also pragmatically discusses existing challenges in the field of HAR and examines the prospects in the field.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Video-based Human Action Recognition using Deep Learning: A Review [4.976815699476327]
Human action recognition is an important application domain in computer vision.
Deep learning has been given particular attention by the computer vision community.
This paper presents an overview of the current state-of-the-art in action recognition using video analysis with deep learning techniques.
arXiv Detail & Related papers (2022-08-07T17:12:12Z) - Human Activity Recognition Using Tools of Convolutional Neural Networks:
A State of the Art Review, Data Sets, Challenges and Future Prospects [7.275302131211702]
This review is to summarize recent works based on a wide range of deep neural networks architecture, namely convolutional neural networks (CNNs) for human activity recognition.
The reviewed systems are clustered into four categories depending on the use of input devices like multimodal sensing devices, smartphones, radar, and vision devices.
arXiv Detail & Related papers (2022-02-02T18:52:13Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
This paper introduces the researchers of the field to a new perspective and reviews the recent deep-learning based semi-supervised video anomaly detection approaches.
Our goal is to help researchers develop more effective video anomaly detection methods.
arXiv Detail & Related papers (2021-11-02T14:00:33Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
We propose a human activity recognition (HAR) approach for the online prediction of physical movements.
We develop a HAR system containing monitoring software and a mobile application that collects accelerometer and gyroscope data.
Six incremental learning algorithms are employed and evaluated in this work and compared with several batch learning algorithms commonly used for developing offline HAR systems.
arXiv Detail & Related papers (2021-09-20T11:33:09Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and continual learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning, and the continual learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-15T16:41:20Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.