An Efficient Quantum Binary-Neuron Algorithm for Accurate Multi-Story Floor Localization
- URL: http://arxiv.org/abs/2409.00792v1
- Date: Sun, 1 Sep 2024 18:09:38 GMT
- Title: An Efficient Quantum Binary-Neuron Algorithm for Accurate Multi-Story Floor Localization
- Authors: Yousef Zook, Ahmed Shokry, Moustafa Youssef,
- Abstract summary: We propose a quantum algorithm for accurate multi-story localization.
We implement the proposed algorithm on a real IBM quantum machine and evaluate it on three real indoor testbeds.
- Score: 4.415197030186768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate floor localization in a multi-story environment is an important but challenging task. Among the current floor localization techniques, fingerprinting is the mainstream technology due to its accuracy in noisy environments. To achieve accurate floor localization in a building with many floors, we have to collect sufficient data on each floor, which needs significant storage and running time; preventing fingerprinting techniques from scaling to support large multi-story buildings, especially on a worldwide scale. In this paper, we propose a quantum algorithm for accurate multi-story localization. The proposed algorithm leverages quantum computing concepts to provide an exponential enhancement in both space and running time compared to the classical counterparts. In addition, it builds on an efficient binary-neuron implementation that can be implemented using fewer qubits compared to the typical non-binary neurons, allowing for easier deployment with near-term quantum devices. We implement the proposed algorithm on a real IBM quantum machine and evaluate it on three real indoor testbeds. Results confirm the exponential saving in both time and space for the proposed quantum algorithm, while keeping the same localization accuracy compared to the traditional classical techniques, and using half the number of qubits required for other quantum localization algorithms.
Related papers
- An Efficient Quantum Euclidean Similarity Algorithm for Worldwide Localization [4.962238993531738]
We propose an efficient quantum Euclidean similarity algorithm for wireless localization systems.
The proposed quantum algorithm offers exponentially improved complexity compared to its classical counterpart.
arXiv Detail & Related papers (2024-07-19T21:52:49Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Device-independent Quantum Fingerprinting for Large Scale Localization [6.141741864834815]
We present QHFP, a device-independent quantum fingerprint matching algorithm.
In particular, we present a quantum algorithm with a complexity that is exponentially better than the classical techniques.
Results confirm the ability of QHFP to obtain the correct estimated location with an exponential improvement in space and running time.
arXiv Detail & Related papers (2022-06-22T04:35:17Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
We investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms.
ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size.
These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization.
arXiv Detail & Related papers (2022-03-07T18:59:03Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.