論文の概要: LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization
- arxiv url: http://arxiv.org/abs/2409.00819v1
- Date: Sun, 1 Sep 2024 19:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 09:01:41.248763
- Title: LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization
- Title(参考訳): LibriheavyMix: 単一チャンネル残響音声分離, ASR, 話者ダイアリゼーションのための20,000時間データセット
- Authors: Zengrui Jin, Yifan Yang, Mohan Shi, Wei Kang, Xiaoyu Yang, Zengwei Yao, Fangjun Kuang, Liyong Guo, Lingwei Meng, Long Lin, Yong Xu, Shi-Xiong Zhang, Daniel Povey,
- Abstract要約: 本稿では、音声分離、音声認識、話者ダイアリゼーションの研究を進めるために、大規模遠距離重畳音声データセットを提案する。
このデータセットは、マルチストーカー、リバーラント環境において、Who氏の“What and When’’”を復号するための重要なリソースである。
- 参考スコア(独自算出の注目度): 31.01716151301142
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data.
- Abstract(参考訳): 音声処理の進化は、会議やカクテルパーティーのような複雑なシナリオにますます焦点を絞っている。
これらの課題に対処するための既存の方法論は、マルチチャネルとシングルチャネルソリューションの2つのカテゴリに分類される。
汎用性と利便性で注目されるシングルチャネルアプローチは、マイクロホンアレイに関する具体的な情報を必要としない。
本稿では,音声分離,認識,話者ダイアリゼーションの研究を進めるために,大規模遠距離重畳音声データセットを提案する。
このデータセットは、マルチストーカー、残響環境における ``Who said What and When''' をデコードするための重要なリソースである。
さらに,基本ベンチマークとして,音声認識,ダイアリゼーションを含むパイプラインシステムを導入する。
WHAMR!データセットの評価は、提案したデータの広範な適用性を検証する。
関連論文リスト
- Empowering Whisper as a Joint Multi-Talker and Target-Talker Speech Recognition System [73.34663391495616]
本稿では,複数話者と目標話者の音声認識タスクを併用する先駆的手法を提案する。
具体的には、Whisperを凍結し、Sidecarセパレータをエンコーダに差し込み、複数の話者に対する混合埋め込みを分離する。
AishellMix Mandarin データセット上で,マルチストーカー ASR 上で許容できるゼロショット性能を提供する。
論文 参考訳(メタデータ) (2024-07-13T09:28:24Z) - NOTSOFAR-1 Challenge: New Datasets, Baseline, and Tasks for Distant
Meeting Transcription [21.236634241186458]
本研究では,Natural Office Talkers in Settings of Far-field Audio Recordings (NOTSOFAR-1'') Challenge with datasets and baseline system。
この課題は遠距離話者ダイアリゼーションと遠隔会議シナリオにおける自動音声認識(DASR)に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-16T23:50:26Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
ビデオ入力は、マスクベースのMVDR音声分離、DNN-WPEまたはスペクトルマッピング(SpecM)ベースの音声残響フロントエンドで一貫して実証される。
オックスフォードLSS2データセットのシミュレーションや再生を用いて合成した重畳および残響音声データについて実験を行った。
論文 参考訳(メタデータ) (2023-07-06T10:50:46Z) - Multi-microphone Automatic Speech Segmentation in Meetings Based on
Circular Harmonics Features [0.0]
円形高調波領域(CH-DOA)の方向推定に基づく新しい空間的特徴セットを提案する。
AMIミーティングコーパスの実験では、CH-DOAは非活性化マイクロホンの場合の堅牢さを保ちながらセグメンテーションを改善することができる。
論文 参考訳(メタデータ) (2023-06-07T09:09:00Z) - ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition [100.30565531246165]
音声認識システムはデータセット固有のチューニングを必要とする。
このチューニング要件は、他のデータセットやドメインへの一般化に失敗したシステムにつながる可能性がある。
本稿では,1つの自動音声認識システムの性能を評価するために,エンド・ツー・エンド音声ベンチマーク(ESB)を提案する。
論文 参考訳(メタデータ) (2022-10-24T15:58:48Z) - MultiSV: Dataset for Far-Field Multi-Channel Speaker Verification [0.0]
本稿では,テキスト非依存型マルチチャネル話者検証システムの訓練と評価を目的とした包括的コーパスを提案する。
また、難聴、難聴、音声強調などの実験にも容易に利用できる。
論文 参考訳(メタデータ) (2021-11-11T20:55:58Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
本論文では,単一チャンネルの音声記録から会議ダイアリゼーションを行う,エンドツーエンドのディープネットワークモデルを提案する。
提案システムは,可変数の置換不変なクロスエントロピーに基づく損失関数を用いて,未知数の話者とのミーティングを処理するように設計されている。
論文 参考訳(メタデータ) (2021-05-05T14:55:29Z) - Streaming Multi-talker Speech Recognition with Joint Speaker
Identification [77.46617674133556]
SURITは、音声認識と話者識別の両方のバックボーンとして、リカレントニューラルネットワークトランスデューサ(RNN-T)を採用しています。
Librispeechから派生したマルチストーカーデータセットであるLibrispeechデータセットに関するアイデアを検証し、奨励的な結果を提示した。
論文 参考訳(メタデータ) (2021-04-05T18:37:33Z) - Continuous Speech Separation with Ad Hoc Microphone Arrays [35.87274524040486]
音声分離は複数話者音声認識に有効であることが示された。
本稿では,このアプローチを連続音声分離に拡張する。
単一話者セグメントにおける音声問題を緩和する2つの手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T13:01:08Z) - Audio-visual Multi-channel Recognition of Overlapped Speech [79.21950701506732]
本稿では,音声とマルチチャンネルの重なり合う音声認識システムについて述べる。
実験により,提案したマルチチャネルAVSRシステムは,音声のみのASRシステムを最大6.81% (26.83%) ,22.22% (56.87%) の絶対単語誤り率 (WER) で比較した。
論文 参考訳(メタデータ) (2020-05-18T10:31:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。