Accelerating Hybrid Agent-Based Models and Fuzzy Cognitive Maps: How to Combine Agents who Think Alike?
- URL: http://arxiv.org/abs/2409.00824v1
- Date: Sun, 1 Sep 2024 19:45:15 GMT
- Title: Accelerating Hybrid Agent-Based Models and Fuzzy Cognitive Maps: How to Combine Agents who Think Alike?
- Authors: Philippe J. Giabbanelli, Jack T. Beerman,
- Abstract summary: We present an approximation that combines agents who think alike', thus reducing the population size and the compute time.
Our innovation relies on representing agent behaviors as networks of rules and empirically evaluating different measures of distance between these networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While Agent-Based Models can create detailed artificial societies based on individual differences and local context, they can be computationally intensive. Modelers may offset these costs through a parsimonious use of the model, for example by using smaller population sizes (which limits analyses in sub-populations), running fewer what-if scenarios, or accepting more uncertainty by performing fewer simulations. Alternatively, researchers may accelerate simulations via hardware solutions (e.g., GPU parallelism) or approximation approaches that operate a tradeoff between accuracy and compute time. In this paper, we present an approximation that combines agents who `think alike', thus reducing the population size and the compute time. Our innovation relies on representing agent behaviors as networks of rules (Fuzzy Cognitive Maps) and empirically evaluating different measures of distance between these networks. Then, we form groups of think-alike agents via community detection and simplify them to a representative agent. Case studies show that our simplifications remain accuracy.
Related papers
- Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
We present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores.
Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward.
arXiv Detail & Related papers (2024-05-21T18:45:18Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean.
We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach.
arXiv Detail & Related papers (2024-02-20T08:30:46Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - Neural Amortized Inference for Nested Multi-agent Reasoning [54.39127942041582]
We propose a novel approach to bridge the gap between human-like inference capabilities and computational limitations.
We evaluate our method in two challenging multi-agent interaction domains.
arXiv Detail & Related papers (2023-08-21T22:40:36Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Deep Learning-based Spatially Explicit Emulation of an Agent-Based
Simulator for Pandemic in a City [0.6875312133832077]
Agent-Based Models are useful for simulation of physical or social processes, such as the spreading of a pandemic in a city.
Such models are computationally very expensive, and the complexity is often linear in the total number of agents.
In this paper, we discuss a Deep Learning model based on Dilated Convolutional Neural Network that can emulate such an agent based model with high accuracy.
arXiv Detail & Related papers (2022-05-28T10:56:37Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Data-driven model reduction of agent-based systems using the Koopman
generator [0.3867363075280544]
We show how Koopman operator theory can be used to derive reduced models of agent-based systems.
Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or differential equations.
arXiv Detail & Related papers (2020-12-14T17:12:54Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - Learning to Model Opponent Learning [11.61673411387596]
Multi-Agent Reinforcement Learning (MARL) considers settings in which a set of coexisting agents interact with one another and their environment.
This poses a great challenge for value function-based algorithms whose convergence usually relies on the assumption of a stationary environment.
We develop a novel approach to modelling an opponent's learning dynamics which we term Learning to Model Opponent Learning (LeMOL)
arXiv Detail & Related papers (2020-06-06T17:19:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.