Compressing VAE-Based Out-of-Distribution Detectors for Embedded Deployment
- URL: http://arxiv.org/abs/2409.00880v1
- Date: Mon, 2 Sep 2024 00:39:29 GMT
- Title: Compressing VAE-Based Out-of-Distribution Detectors for Embedded Deployment
- Authors: Aditya Bansal, Michael Yuhas, Arvind Easwaran,
- Abstract summary: Out-of-distribution detectors can act as safety monitors in embedded cyber-physical systems.
Deep neural networks make it difficult to meet real-time deadlines on embedded systems with memory and power constraints.
We propose a design methodology that combines all three compression techniques and yields a significant decrease in memory and execution time.
- Score: 2.27626288527213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detectors can act as safety monitors in embedded cyber-physical systems by identifying samples outside a machine learning model's training distribution to prevent potentially unsafe actions. However, OOD detectors are often implemented using deep neural networks, which makes it difficult to meet real-time deadlines on embedded systems with memory and power constraints. We consider the class of variational autoencoder (VAE) based OOD detectors where OOD detection is performed in latent space, and apply quantization, pruning, and knowledge distillation. These techniques have been explored for other deep models, but no work has considered their combined effect on latent space OOD detection. While these techniques increase the VAE's test loss, this does not correspond to a proportional decrease in OOD detection performance and we leverage this to develop lean OOD detectors capable of real-time inference on embedded CPUs and GPUs. We propose a design methodology that combines all three compression techniques and yields a significant decrease in memory and execution time while maintaining AUROC for a given OOD detector. We demonstrate this methodology with two existing OOD detectors on a Jetson Nano and reduce GPU and CPU inference time by 20% and 28% respectively while keeping AUROC within 5% of the baseline.
Related papers
- Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
arXiv Detail & Related papers (2024-09-05T02:58:13Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW
Radar [0.0]
We propose a novel reconstruction-based OOD detector to operate on the radar domain.
Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples.
We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar.
arXiv Detail & Related papers (2023-02-27T23:03:51Z) - Rainproof: An Umbrella To Shield Text Generators From
Out-Of-Distribution Data [41.62897997865578]
Key ingredient to ensure safe system behaviour is Out-Of-Distribution detection.
Most methods rely on hidden features output by the encoder.
In this work, we focus on leveraging soft-probabilities in a black-box framework.
arXiv Detail & Related papers (2022-12-18T21:22:28Z) - Identifying Out-of-Distribution Samples in Real-Time for Safety-Critical
2D Object Detection with Margin Entropy Loss [0.0]
We present an approach to enable OOD detection for 2D object detection by employing the margin entropy (ME) loss.
A CNN trained with the ME loss significantly outperforms OOD detection using standard confidence scores.
arXiv Detail & Related papers (2022-09-01T11:14:57Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
An out-of-distribution (OOD) detector can run in parallel with an ML model and flag inputs that could lead to undesirable outcomes.
This study proposes a design methodology to tune deep OOD detectors to meet the accuracy and response time requirements of embedded applications.
arXiv Detail & Related papers (2022-07-29T14:06:27Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.