Driving noncollinear interlayer exchange coupling intrinsically in magnetic trilayers
- URL: http://arxiv.org/abs/2409.00911v2
- Date: Fri, 6 Sep 2024 02:14:47 GMT
- Title: Driving noncollinear interlayer exchange coupling intrinsically in magnetic trilayers
- Authors: Guan-Wei Peng, Hung-Chin Wang, Yu-Jie Zhong, Chao-Cheng Kaun, Ching-Hao Chang,
- Abstract summary: The magnetic moments of the Fe/Ag/Fe trilayer tend to be perpendicular at a specific width of the Ag spacers.
This alignment is mediated by Ag quantum well states, exhibiting spin spirals across the trilayer.
Our results reveal that the noncollinear IEC offers a degree of freedom to control magnetic devices and boot spintronic technology with improved transport capabilities.
- Score: 9.39981331622947
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ferromagnetic side layers sandwiching a nonmagnetic spacer as a metallic trilayer has become a pivotal platform for achieving spintronic devices. Recent experiments demonstrate that manipulating the width or the nature of conducting spacer induces noncollinear magnetic alignment between the side layers. Our theoretical analysis reveals that altering the width of spacer significantly affects the interlayer exchange coupling (IEC), resulting in noncollinear alignment. Through analytic and first-principles methods, our study on the Fe/Ag/Fe trilayer shows that at a specific width of the Ag spacer, the magnetic moments of side layers tend to be perpendicular. This alignment is mediated by Ag quantum well states, exhibiting spin spirals across the trilayer. Our results reveal that the noncollinear IEC offers a degree of freedom to control magnetic devices and boot spintronic technology with improved transport capabilities.
Related papers
- Diverging entanglement of critical magnons in easy-axis antiferromagnets [0.5910597773909121]
We study the instability of antiferromagnets with easy-axis anisotropy under a magnetic field.
Near the phase boundary, the entanglement between the sublattice magnons diverges due to the interplay among antiferromagnetic exchange interaction, anisotropy, and magnetic field.
arXiv Detail & Related papers (2024-11-04T18:00:03Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Non-volatile Electric Control of Magnetic and Topological Properties of
MnBi2Te4 Thin Films [66.02797153096846]
We propose a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling.
This mechanism uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material.
arXiv Detail & Related papers (2022-12-29T14:51:05Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Layer-dependent interlayer antiferromagnetic spin reorientation in
air-stable semiconductor CrSBr [13.368466574719537]
Magnetic van der Waals (vdW) materials offer a fantastic platform to investigate and exploit rich spin stabilized in reduced dimensions.
One tantalizing magnetic order is the interlayer antiferromagnetism in A-type vdW antiferromagnet.
Here, we report the layer-dependent interlayer antiferromagnetic reorientation in air-stable semiconductor CrSBr.
arXiv Detail & Related papers (2022-05-11T12:55:59Z) - In situ transport characterization of magnetic states in Nb/Co
superconductor/ferromagnet heterostructures [0.0]
We study experimentally in-plane transport properties of Nb/Co multilayers.
We demonstrate how FORC can be used for detailed in situ characterization of magnetic states.
arXiv Detail & Related papers (2022-04-26T14:06:18Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
We coherently control the NV center's spin precession to achieve ultra-sensitive ac susceptometry of a 2D ferromagnet.
We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for frequencies exceeding hundreds of kilohertz.
Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
arXiv Detail & Related papers (2021-05-17T17:28:46Z) - Long-Timescale Magnetization Ordering Induced by an Adsorbed Chiral
Monolayer on Ferromagnets [0.0]
We show that magnetization reversal in a ferromagnet with perpendicular anisotropy can be realized solely by chemisorbing a chiral molecular monolayer.
We have identified that changes in the magnetization direction correspond to changes of the molecular monolayer tilt angle.
This suggests that the CISS effect has an effect over long-timescales which we attribute to exchange interactions.
arXiv Detail & Related papers (2021-03-03T12:25:06Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.