論文の概要: VQ-Flow: Taming Normalizing Flows for Multi-Class Anomaly Detection via Hierarchical Vector Quantization
- arxiv url: http://arxiv.org/abs/2409.00942v1
- Date: Mon, 2 Sep 2024 05:01:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:21:03.063158
- Title: VQ-Flow: Taming Normalizing Flows for Multi-Class Anomaly Detection via Hierarchical Vector Quantization
- Title(参考訳): VQ-Flow:階層ベクトル量子化によるマルチクラス異常検出のための正規化フローのモデリング
- Authors: Yixuan Zhou, Xing Xu, Zhe Sun, Jingkuan Song, Andrzej Cichocki, Heng Tao Shen,
- Abstract要約: 本稿では,マルチクラス異常検出における流れの正規化の可能性について検討する。
我々はフローモデルに、教師なしの方法で複数のクラス正規データの異なる概念を区別する権限を与え、結果としてVQ-Flowという新しいフローベース統一手法が生み出された。
提案されたVQ-Flowは、統合トレーニングスキーム内でのマルチクラスの異常検出の最先端を推し進め、MVTec ADで99.5%/98.3%のAUROCが得られる。
- 参考スコア(独自算出の注目度): 101.41553763861381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows, a category of probabilistic models famed for their capabilities in modeling complex data distributions, have exhibited remarkable efficacy in unsupervised anomaly detection. This paper explores the potential of normalizing flows in multi-class anomaly detection, wherein the normal data is compounded with multiple classes without providing class labels. Through the integration of vector quantization (VQ), we empower the flow models to distinguish different concepts of multi-class normal data in an unsupervised manner, resulting in a novel flow-based unified method, named VQ-Flow. Specifically, our VQ-Flow leverages hierarchical vector quantization to estimate two relative codebooks: a Conceptual Prototype Codebook (CPC) for concept distinction and its concomitant Concept-Specific Pattern Codebook (CSPC) to capture concept-specific normal patterns. The flow models in VQ-Flow are conditioned on the concept-specific patterns captured in CSPC, capable of modeling specific normal patterns associated with different concepts. Moreover, CPC further enables our VQ-Flow for concept-aware distribution modeling, faithfully mimicking the intricate multi-class normal distribution through a mixed Gaussian distribution reparametrized on the conceptual prototypes. Through the introduction of vector quantization, the proposed VQ-Flow advances the state-of-the-art in multi-class anomaly detection within a unified training scheme, yielding the Det./Loc. AUROC of 99.5%/98.3% on MVTec AD. The codebase is publicly available at https://github.com/cool-xuan/vqflow.
- Abstract(参考訳): 複雑なデータ分布をモデル化する能力で有名な確率モデルのカテゴリである正規化フローは、教師なし異常検出において顕著な効果を示した。
本稿では,マルチクラス異常検出におけるフローの正規化の可能性について検討する。
ベクトル量子化(VQ)の統合により,多クラス正規データの異なる概念を教師なしで識別するフローモデルが強化され,VQ-Flowと呼ばれる新しいフローベース統一手法が実現される。
具体的には,概念識別のための概念プロトタイプコードブック (Conceptual Prototype Codebook, CPC) と概念固有パターンコードブック (Concomitant Concept-Specific Pattern Codebook, CSPC) の2つの相対的符号ブックを,階層的ベクトル量子化を用いて推定する。
VQ-Flowのフローモデルは、CSPCでキャプチャされた概念固有のパターンに基づいており、異なる概念に関連する特定の通常のパターンをモデル化することができる。
さらに、CPCは、概念認識分布モデリングのためのVQ-Flowを可能にし、概念プロトタイプ上で再パラメータ化された混合ガウス分布を通して、複雑な多クラス正規分布を忠実に模倣する。
ベクトル量子化の導入により、提案したVQ-Flowは、統一的なトレーニングスキーム内での多クラス異常検出において最先端の手法を推し進め、Detを得る。
/Loc
AUROC 99.5%/98.3% MVTec AD
コードベースはhttps://github.com/cool-xuan/vqflow.comで公開されている。
関連論文リスト
- MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
我々は、低レベルの特徴の意思決定プロセスに関する洞察が欠如している説明は、完全に忠実でも有用でもないと論じる。
本稿では,クラス認識概念分布(CCD)の損失を通じて,分類目的のマルチレベル概念のプロトタイプ分布を学習・調整する新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-13T11:13:56Z) - Quantum Normalizing Flows for Anomaly Detection [23.262276593120305]
量子アーキテクチャのための正規化フローを導入し、そのようなフローをモデル化し最適化する方法を説明し、サンプルデータセット上でメソッドを評価する。
提案モデルでは,従来の手法と比較して,異常検出の競合性能を示す。
実験では, 森林の隔離, 局所降水率 (LOF) , 単一クラスSVMとの比較を行った。
論文 参考訳(メタデータ) (2024-02-05T10:28:20Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
論文 参考訳(メタデータ) (2023-02-12T13:51:36Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - A new perspective on probabilistic image modeling [92.89846887298852]
本稿では,密度推定,サンプリング,トラクタブル推論が可能な画像モデリングのための新しい確率論的手法を提案する。
DCGMMは、CNNのように、ランダムな初期条件からSGDによってエンドツーエンドに訓練することができる。
本研究は,近年のPCおよびSPNモデルと,推論,分類,サンプリングの観点から比較した。
論文 参考訳(メタデータ) (2022-03-21T14:53:57Z) - Diffusion bridges vector quantized Variational AutoEncoders [0.0]
我々のモデルは,ミニイメージネットデータセットに先行する自己回帰と競合することを示す。
我々のフレームワークは、標準のVQ-VAEを拡張し、エンドツーエンドのトレーニングを可能にします。
論文 参考訳(メタデータ) (2022-02-10T08:38:12Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
分類のための連続学習のためのハイブリッド生成識別手法であるHCLを提案する。
フローは、データの配布を学習し、分類を行い、タスクの変更を特定し、忘れることを避けるために使用される。
本研究では,スプリット-MNIST,スプリット-CIFAR,SVHN-MNISTなどの連続学習ベンチマークにおいて,HCLの強い性能を示す。
論文 参考訳(メタデータ) (2021-06-24T05:19:26Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
フェデレートラーニング(FL)は、ユーザがプライベートラベル付きデータを共有することなく、そのような学習モデルをトレーニングする、新たなアプローチである。
FLでは、各ユーザが学習モデルのコピーをローカルにトレーニングする。その後、サーバは個々の更新を収集し、それらをグローバルモデルに集約する。
普遍ベクトル量子化法をFLと組み合わせることで、訓練されたモデルの圧縮が最小歪みのみを誘導する分散トレーニングシステムが得られることを示す。
論文 参考訳(メタデータ) (2020-06-05T07:10:22Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z) - Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow [16.41460104376002]
有限体積を変換し、離散データに対する確率の正確な計算を可能にするサブセットフローを導入する。
我々は、WaveNets、PixelCNNs、Transformersを含む通常の離散自己回帰モデルを単層フローとして識別する。
我々は, CIFAR-10 を用いて, 脱量子化を訓練した流れモデルについて, 実測結果を示す。
論文 参考訳(メタデータ) (2020-02-06T22:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。