論文の概要: A computational transition for detecting correlated stochastic block models by low-degree polynomials
- arxiv url: http://arxiv.org/abs/2409.00966v1
- Date: Mon, 2 Sep 2024 06:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:08:59.578931
- Title: A computational transition for detecting correlated stochastic block models by low-degree polynomials
- Title(参考訳): 低次多項式による相関確率ブロックモデル検出のための計算遷移
- Authors: Guanyi Chen, Jian Ding, Shuyang Gong, Zhangsong Li,
- Abstract要約: 一対のランダムグラフにおける相関性の検出は、近年広く研究されている基本的な統計的および計算上の問題である。
一対の相関ブロックモデル $mathcalS(n,tfraclambdan;k,epsilon;s)$ を共通の親ブロックモデル $mathcalS(n,tfraclambdan;k,epsilon;s)$ からサブサンプリングする。
隣接部のエントリーのエンスロー度に基づくテストに焦点をあてる
- 参考スコア(独自算出の注目度): 13.396246336911842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years. In this work, we consider a pair of correlated (sparse) stochastic block models $\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon;s)$ that are subsampled from a common parent stochastic block model $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon)$ with $k=O(1)$ symmetric communities, average degree $\lambda=O(1)$, divergence parameter $\epsilon$, and subsampling probability $s$. For the detection problem of distinguishing this model from a pair of independent Erd\H{o}s-R\'enyi graphs with the same edge density $\mathcal{G}(n,\tfrac{\lambda s}{n})$, we focus on tests based on \emph{low-degree polynomials} of the entries of the adjacency matrices, and we determine the threshold that separates the easy and hard regimes. More precisely, we show that this class of tests can distinguish these two models if and only if $s> \min \{ \sqrt{\alpha}, \frac{1}{\lambda \epsilon^2} \}$, where $\alpha\approx 0.338$ is the Otter's constant and $\frac{1}{\lambda \epsilon^2}$ is the Kesten-Stigum threshold. Our proof of low-degree hardness is based on a conditional variant of the low-degree likelihood calculation.
- Abstract(参考訳): 一対のランダムグラフにおける相関性の検出は、近年広く研究されている基本的な統計的および計算上の問題である。
この研究では、相関(スパース)確率ブロックモデル $\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon;s)$を共通の親確率ブロックモデル $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon)$ with $k=O(1)$ symmetric community, average degree $\lambda=O(1)$, divergence parameter $\epsilon$, subsampling probability $s$とみなす。
このモデルを同一辺密度$\mathcal{G}(n,\tfrac{\lambda s}{n})$の独立したErd\H{o}s-R\'enyiグラフと区別する検出問題に対して、隣接行列のエントリの \emph{low-degree polynomials} に基づくテストに焦点を合わせ、容易かつ難しい規則を分離するしきい値を決定する。
より正確には、このテストのクラスがこれらの2つのモデルを区別できることは、$s> \min \{ \sqrt{\alpha}, \frac{1}{\lambda \epsilon^2} \}$, where $\alpha\approx 0.338$ is the Otter's constant and $\frac{1}{\lambda \epsilon^2}$ is the Kesten-Stigum thresholdである場合に限る。
低次硬さの証明は、低次硬さ計算の条件変種に基づいている。
関連論文リスト
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
以前の$mathRd上の分布に関する民間推定者は、次元性の呪いに苦しむ。
本稿では,サンプルの複雑さが次元依存性を改善したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-01T17:59:53Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の等方的ガウスデータの下で勾配降下学習の問題を考察する。
SGDアルゴリズムで最適化された2層ニューラルネットワークは、サンプル付き任意のリンク関数の$f_*$を学習し、実行時の複雑さは$n asymp T asymp C(q) cdot dであることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
ランダムグラフにおける植込み高密度部分グラフの検出は、基本的な統計的および計算上の問題である。
我々は、$Gr(n, n-beta)ハイパーグラフにおいて、植えた$Gr(ngamma, n-alpha)$ subhypergraphの存在を検出することを検討する。
平均値の減少に基づく硬さが不明な微妙な対数密度構造を考えると,この結果はグラフの場合$r=2$で既に新しくなっている。
論文 参考訳(メタデータ) (2023-04-17T10:38:08Z) - Planted Bipartite Graph Detection [13.95780443241133]
ランダムグラフに隠れた二部グラフを検出するタスクについて検討する。
ヌル仮説の下では、このグラフは、エッジ密度$q$の$n$上のアードホスラーイランダムグラフの実現である。
k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$。
論文 参考訳(メタデータ) (2023-02-07T18:18:17Z) - Sparse Signal Detection in Heteroscedastic Gaussian Sequence Models:
Sharp Minimax Rates [1.0309387309011746]
スパースな代替品に対する信号検出問題を、既知のスパシティ$s$に対して検討する。
ミニマックス分離半径$epsilon*$の上の上限と下限を見つけ、それらが常に一致することを証明する。
以上の結果から,epsilon*$の挙動に関する新たな位相遷移が,Sigma$の疎度レベル,$Lt$メトリック,およびヘテロスセダサシティプロファイル(herescedasticity profile)に現れる。
論文 参考訳(メタデータ) (2022-11-15T23:53:39Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture
Models [12.746888269949407]
2進隠れマルコフモデルに対する高次元平均推定問題を考える。
ほぼ最小限の誤差率(対数係数まで)を $|theta_*|,delta,d,n$ の関数として確立する。
論文 参考訳(メタデータ) (2022-06-06T09:34:04Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
本稿では、パラメータ法と非パラメトリック法の両方を用いて、Rp$における$p$次元ランダムベクトル$Xのグラフィカル構造を学習する。
温和な条件下では、グラフ構造推定器が正しい構造を得ることができることを示す。
論文 参考訳(メタデータ) (2022-05-06T19:24:44Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
有限混合系における非パラメトリック分布の学習問題について検討する。
このようなモデルにおける成分分布を学習するために、サンプルの複雑さに厳密な境界を定めている。
論文 参考訳(メタデータ) (2022-03-28T23:53:48Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。