論文の概要: Regret Analysis for Randomized Gaussian Process Upper Confidence Bound
- arxiv url: http://arxiv.org/abs/2409.00979v2
- Date: Mon, 16 Sep 2024 06:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 22:48:25.639136
- Title: Regret Analysis for Randomized Gaussian Process Upper Confidence Bound
- Title(参考訳): ランダム化ガウス過程の上層信頼境界のレグレト解析
- Authors: Shion Takeno, Yu Inatsu, Masayuki Karasuyama,
- Abstract要約: 本稿では,GP-UCBの改良型であるGP-UCBのランダム化変異を解析する。
両方の後悔解析において、IRGP-UCBは入力領域が有限であれば信頼パラメータを増大させることなく、サブ線形後悔上限を達成する。
- 参考スコア(独自算出の注目度): 9.967062483758632
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gaussian process upper confidence bound (GP-UCB) is a theoretically established algorithm for Bayesian optimization (BO), where we assume the objective function $f$ follows GP. One notable drawback of GP-UCB is that the theoretical confidence parameter $\beta$ increased along with the iterations is too large. To alleviate this drawback, this paper analyzes the randomized variant of GP-UCB called improved randomized GP-UCB (IRGP-UCB), which uses the confidence parameter generated from the shifted exponential distribution. We analyze the expected regret and conditional expected regret, where the expectation and the probability are taken respectively with $f$ and noises and with the randomness of the BO algorithm. In both regret analyses, IRGP-UCB achieves a sub-linear regret upper bound without increasing the confidence parameter if the input domain is finite. Finally, we show numerical experiments using synthetic and benchmark functions and real-world emulators.
- Abstract(参考訳): ガウス過程上信頼境界 (GP-UCB) はベイズ最適化 (BO) の理論的に確立されたアルゴリズムであり、目的関数 $f$ は GP に従うと仮定する。
GP-UCBの特筆すべき欠点は、反復とともに$\beta$が増加するという理論的な信頼パラメータが大きすぎることである。
この欠点を軽減するために, 指数関数分布から生じる信頼度パラメータを用いて, 改良された乱数化GP-UCB (IRGP-UCB) と呼ばれるGP-UCBのランダム化変種を解析した。
予測された後悔と条件付き後悔を分析し、予測と確率をそれぞれ$f$とノイズとBOアルゴリズムのランダム性で分析する。
両方の後悔解析において、IRGP-UCBは入力領域が有限であれば信頼パラメータを増大させることなく、サブ線形後悔上限を達成する。
最後に,合成およびベンチマーク関数と実世界のエミュレータを用いた数値実験を行った。
関連論文リスト
- On the Sublinear Regret of GP-UCB [58.25014663727544]
ガウス過程上信頼境界 (GP-UCB) アルゴリズムは, ほぼ最適の後悔率を有することを示す。
私たちの改善は、基盤となるカーネルの滑らかさに比例してカーネルリッジ推定を正規化するという、重要な技術的貢献に依存しています。
論文 参考訳(メタデータ) (2023-07-14T13:56:11Z) - Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian
Regret Bounds [9.89553853547974]
本研究はまず,RGP-UCBの後悔解析をガンマ分布を含むより広範な分布に一般化する。
本稿では,2パラメータ指数分布に基づく改良されたRGP-UCBを提案する。
IRGP-UCBの広汎な実験による有効性を示す。
論文 参考訳(メタデータ) (2023-02-03T02:48:48Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
カーネル化されたバンディットアルゴリズムは、この問題に対して強い経験的および理論的性能を示した。
本稿では、未知関数を$epsilon$-一様近似で近似できるエンフェミス特定カーネル化帯域設定を、ある再生カーネルヒルベルト空間(RKHS)において有界ノルムを持つ関数で導入する。
提案アルゴリズムは,不特定性に関する事前知識を伴わず,$epsilon$への最適依存を実現する。
論文 参考訳(メタデータ) (2021-11-09T09:00:02Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
ガウス過程(GP)は、モデルの不確実性の原理的計算を可能にし、安全性に重要なアプリケーションに魅力的です。
境界付き摂動に対するモデル決定の不変性として定義されるGPの対向的堅牢性を分析するためのフレームワークを提案する。
我々は境界を洗練し、任意の$epsilon > 0$に対して、我々のアルゴリズムが有限個の反復で実際の値に$epsilon$-closeの値に収束することを保証していることを示す分岐とバウンドのスキームを開発する。
論文 参考訳(メタデータ) (2021-04-07T15:14:56Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
改良されたガウス過程上信頼境界(GP-UCB)取得関数を開発した。
これは、分布から探索・探索トレードオフパラメータをサンプリングすることによって行われる。
これにより、期待されるトレードオフパラメータが、関数のベイズ的後悔に縛られることなく、問題によりよく適合するように変更できることが証明される。
論文 参考訳(メタデータ) (2020-06-08T00:28:41Z) - Regret and Belief Complexity Trade-off in Gaussian Process Bandits via
Information Thresholding [42.669970064867556]
GPバンディットアルゴリズムの残差境界と後部分布の複雑さのトレードオフを特徴付ける方法を示す。
大域的最適化に応用したGPバンディットアルゴリズムの精度と複雑性のトレードオフを観察する。
論文 参考訳(メタデータ) (2020-03-23T21:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。