論文の概要: DNN-GDITD: Out-of-distribution detection via Deep Neural Network based Gaussian Descriptor for Imbalanced Tabular Data
- arxiv url: http://arxiv.org/abs/2409.00980v2
- Date: Wed, 4 Sep 2024 12:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:08:59.554816
- Title: DNN-GDITD: Out-of-distribution detection via Deep Neural Network based Gaussian Descriptor for Imbalanced Tabular Data
- Title(参考訳): DNN-GDITD:不均衡語彙データのためのディープニューラルネットワークに基づくガウス記述子による分布外検出
- Authors: Priyanka Chudasama, Anil Surisetty, Aakarsh Malhotra, Alok Singh,
- Abstract要約: 本研究では,DNN-GDITD(Deep Neural Network-based Gaussian Descriptor for Im Balanced Tabular Data)という新しいOOD検出アルゴリズムを提案する。
このアルゴリズムは任意のDNNの上に置かれ、球面決定境界を用いた不均衡データのより良い分類とOOD検出を容易にする。
- 参考スコア(独自算出の注目度): 3.3842496750884457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification tasks present challenges due to class imbalances and evolving data distributions. Addressing these issues requires a robust method to handle imbalances while effectively detecting out-of-distribution (OOD) samples not encountered during training. This study introduces a novel OOD detection algorithm designed for tabular datasets, titled Deep Neural Network-based Gaussian Descriptor for Imbalanced Tabular Data (DNN-GDITD). The DNN-GDITD algorithm can be placed on top of any DNN to facilitate better classification of imbalanced data and OOD detection using spherical decision boundaries. Using a combination of Push, Score-based, and focal losses, DNN-GDITD assigns confidence scores to test data points, categorizing them as known classes or as an OOD sample. Extensive experimentation on tabular datasets demonstrates the effectiveness of DNN-GDITD compared to three OOD algorithms. Evaluation encompasses imbalanced and balanced scenarios on diverse tabular datasets, including a synthetic financial dispute dataset and publicly available tabular datasets like Gas Sensor, Drive Diagnosis, and MNIST, showcasing DNN-GDITD's versatility.
- Abstract(参考訳): 分類タスクは、クラス不均衡とデータ分散の進化による課題を示す。
これらの問題に対処するには、トレーニング中に遭遇しないOOD(out-of-distribution)サンプルを効果的に検出しながら、不均衡を処理する堅牢な方法が必要である。
本研究では,DNN-GDITD (Deep Neural Network-based Gaussian Descriptor for Im Balanced Tabular Data) という表層データセットを対象とした新しいOOD検出アルゴリズムを提案する。
DNN-GDITDアルゴリズムは任意のDNNの上に配置することができ、球面決定境界を用いた不均衡データのより良い分類とOOD検出を容易にする。
Push、Scoreベース、フォーカス損失の組み合わせを使用して、DNN-GDITDは信頼度スコアをデータポイントのテストに割り当て、既知のクラスまたはOODサンプルとして分類する。
表形式のデータセットに対する大規模な実験は、3つのOODアルゴリズムと比較してDNN-GDITDの有効性を示す。
評価には、合成金融紛争データセットや、ガスセンサ、ドライブ診断、MNISTといった一般に利用可能な表形式のデータセットなど、さまざまな表形式のデータセット上での不均衡とバランスの取れたシナリオが含まれており、DNN-GDITDの汎用性を示している。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Evaluation of Out-of-Distribution Detection Performance on Autonomous
Driving Datasets [5.000404730573809]
ディープニューラルネットワーク(DNN)の意図した性能をどの程度評価するかについて、安全対策を体系的に検討する必要がある。
本研究は,予測されたクラスに対する最も予測可能なクラス条件ガウス分布に基づいて,マハラノビス距離(MD)を適用して,意味的セグメンテーションDNNからの出力をOODスコアとして評価する。
本研究の適用性は,自動車認識におけるDNNの安全利用を主張する上で,安全対策の正当性をサポートし,その使用を動機付けるものである。
論文 参考訳(メタデータ) (2024-01-30T13:49:03Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
我々は最近提案されたDPLLベースの制約DNN検証手法の拡張であるVeriStableを提案する。
完全接続型フィードネットワーク(FNN)、畳み込み型ニューラルネットワーク(CNN)、残留型ネットワーク(ResNet)など、さまざまな課題のあるベンチマークにおいてVeriStableの有効性を評価する。
予備的な結果は、VeriStableは、VNN-COMPの第1および第2のパフォーマーである$alpha$-$beta$-CROWNやMN-BaBなど、最先端の検証ツールよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-19T23:48:04Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Out of Distribution Data Detection Using Dropout Bayesian Neural
Networks [29.84998820573774]
まず, ドロップアウトBNNの中間層によって誘導されるランダム化埋め込みを利用する試みが, 距離測定によって失敗することを示す。
組込み不確実性を測定するための代替手法を導入し、その使用を理論的に正当化し、組込み不確実性を導入することで、画像分類、言語分類、マルウェア検出の3つのタスクにおけるOODデータ識別が向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T02:23:43Z) - Sketching Curvature for Efficient Out-of-Distribution Detection for Deep
Neural Networks [32.629801680158685]
Sketching Curvature of OoD Detection (SCOD)は、訓練されたディープニューラルネットワークにタスク関連不確実性推定を装備するためのアーキテクチャに依存しないフレームワークである。
SCODは,既存のベースラインと比較して計算負担の少ないOoD検出性能の同等あるいは優れたOoD検出性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-02-24T21:34:40Z) - pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs [12.429095025814345]
重みよりも分布を学習する代わりに、推定時に点推定と摂動重みを用いる擬似BNNを提案する。
全体として、この組み合わせは、推論時にOODサンプルを検出するという原則的な手法をもたらす。
論文 参考訳(メタデータ) (2021-02-02T06:23:04Z) - Statistical model-based evaluation of neural networks [74.10854783437351]
ニューラルネットワーク(NN)の評価のための実験装置を開発する。
このセットアップは、NNs vis-a-vis minimum-mean-square-error (MMSE)パフォーマンス境界のベンチマークに役立つ。
これにより、トレーニングデータサイズ、データ次元、データ幾何学、ノイズ、トレーニング条件とテスト条件のミスマッチの影響をテストできます。
論文 参考訳(メタデータ) (2020-11-18T00:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。