論文の概要: DataSculpt: Crafting Data Landscapes for LLM Post-Training through Multi-objective Partitioning
- arxiv url: http://arxiv.org/abs/2409.00997v1
- Date: Mon, 2 Sep 2024 07:23:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:59:10.398864
- Title: DataSculpt: Crafting Data Landscapes for LLM Post-Training through Multi-objective Partitioning
- Title(参考訳): DataSculpt:多目的分割によるLCM後トレーニングのためのデータランドスケープの構築
- Authors: Keer Lu, Zheng Liang, Xiaonan Nie, Da Pan, Shusen Zhang, Keshi Zhao, Weipeng Chen, Zenan Zhou, Guosheng Dong, Wentao Zhang, Bin Cui,
- Abstract要約: DataSculptは、拡張コンテキストトレーニングのためのデータアーキテクチャを戦略的に強化するために設計されたデータ構築フレームワークである。
我々の評価は、DataSculptの長文トレーニング性能を向上する顕著な能力を示している。
- 参考スコア(独自算出の注目度): 32.914155560286225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness of long-context modeling is important for Large Language Models (LLMs) in various applications. Despite their potential, LLMs' efficacy in processing long context does not consistently meet expectations, posing significant challenges for efficient management of prolonged sequences in training. This difficulty is compounded by the scarcity of comprehensive and diverse training datasets suitable for long sequences, which stems from inherent length biases across different data sources, and the logistical complexities associated with massive data management for training in extended contexts. In this work, we introduce DataSculpt, a data construction framework designed to strategically augment the data architecture for extended-context training. Our thorough evaluations demonstrate DataSculpt's remarkable capacity to boost long-context training performance, achieving improvements including an 18.09% increase in retrieval augmentation, 21.23% in summarization, 21.27% in reading comprehension, and a 3.81% rise in code completion, all while preserving the models' overall proficiency with a 4.88% improvement.
- Abstract(参考訳): 長期コンテキストモデリングの有効性は、様々なアプリケーションにおいて大規模言語モデル(LLM)にとって重要である。
その可能性にもかかわらず、LLMsの長期的文脈における有効性は、常に期待を満たさないため、トレーニングにおける長期的シーケンスの効率的な管理には重大な課題が生じる。
この難しさは、異なるデータソースにまたがる固有の長さバイアスに起因する、長いシーケンスに適した包括的で多様なトレーニングデータセットの不足と、拡張されたコンテキストでのトレーニングのための大規模データ管理に関連する論理的複雑さによって複雑化されている。
本研究では,拡張コンテキストトレーニングのためのデータアーキテクチャを戦略的に強化するデータ構築フレームワークであるDataSculptを紹介する。
我々の徹底的な評価は、DataSculptが長期コンテキストトレーニングのパフォーマンスを向上する驚くべき能力を示し、18.09%の検索強化、21.23%の要約、21.27%の読み取り理解、3.81%のコード補完、そしてモデルの全体的な習熟度を4.88%の改善で保ちながら達成していることを示している。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - DELIFT: Data Efficient Language model Instruction Fine Tuning [13.538140114667772]
本稿では,3段階の微調整におけるデータ選択を体系的に最適化する新しいアルゴリズムであるDELIFTを紹介する。
さまざまなタスクやモデルスケールにわたる実験により、DELIFTはパフォーマンスを損なうことなく、微調整データサイズを最大70%削減できることが示された。
論文 参考訳(メタデータ) (2024-11-07T04:38:29Z) - $\textbf{Only-IF}$:Revealing the Decisive Effect of Instruction Diversity on Generalization [1.6958018695660049]
トレーニングデータがセマンティックドメインで十分に分散されている場合、textbfonlyが$であることを示す。
例えば$textit$textbfspecialist$$と$textit$textbf generalist$$$モデルの微調整などです。
論文 参考訳(メタデータ) (2024-10-07T03:15:11Z) - Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models [21.90388980448712]
長いコンテキストを扱うためのトレーニングモデルには、大きな課題があります。
継続事前学習フェーズで使用される新しいデータ拡張戦略であるUntie the Knots(textbfUtK)を紹介する。
我々は、UtKがRULER上で128Kの文脈長で75%と84.5%の精度を達成したことを示す200億のトークンで訓練された7Bと72Bのパラメータを持つモデルに関する広範な実験を行った。
論文 参考訳(メタデータ) (2024-09-07T09:28:55Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Data Optimization in Deep Learning: A Survey [3.1274367448459253]
本研究の目的は,ディープラーニングのための様々なデータ最適化手法を整理することである。
構築された分類学は分割次元の多様性を考慮し、各次元に深いサブタコノミが構築される。
構築された分類学と明らかにされた接続は、既存の手法のより良い理解と、新しいデータ最適化手法の設計を啓蒙する。
論文 参考訳(メタデータ) (2023-10-25T09:33:57Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
最大32,768個のトークンの効率的なコンテキストウィンドウをサポートする長文LLMを提示する。
我々のモデルは、ほとんどの通常のタスクにおいて一貫した改善を達成し、Llama 2よりも長いコンテキストタスクを大幅に改善します。
論文 参考訳(メタデータ) (2023-09-27T21:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。