Optimal training of finitely-sampled quantum reservoir computers for forecasting of chaotic dynamics
- URL: http://arxiv.org/abs/2409.01394v1
- Date: Mon, 2 Sep 2024 17:51:48 GMT
- Title: Optimal training of finitely-sampled quantum reservoir computers for forecasting of chaotic dynamics
- Authors: Osama Ahmed, Felix Tennie, Luca Magri,
- Abstract summary: In the current Noisy Intermediate Scale Quantum (NISQ) era, the presence of noise deteriorates the performance of quantum computing algorithms.
In this paper, we analyse the effect that finite-sampling noise has on the chaotic time-series prediction capabilities of Quantum Reservoir Computing (QRC) and Recurrence-free Quantum Reservoir Computing (RF-QRC)
We show that finite sampling noise degrades the prediction capabilities of both QRC and RF-QRC while affecting QRC more due to the propagation of noise.
- Score: 3.7960472831772765
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the current Noisy Intermediate Scale Quantum (NISQ) era, the presence of noise deteriorates the performance of quantum computing algorithms. Quantum Reservoir Computing (QRC) is a type of Quantum Machine Learning algorithm, which, however, can benefit from different types of tuned noise. In this paper, we analyse the effect that finite-sampling noise has on the chaotic time-series prediction capabilities of QRC and Recurrence-free Quantum Reservoir Computing (RF-QRC). First, we show that, even without a recurrent loop, RF-QRC contains temporal information about previous reservoir states using leaky integrated neurons. This makes RF-QRC different from Quantum Extreme Learning Machines (QELM). Second, we show that finite sampling noise degrades the prediction capabilities of both QRC and RF-QRC while affecting QRC more due to the propagation of noise. Third, we optimize the training of the finite-sampled quantum reservoir computing framework using two methods: (a) Singular Value Decomposition (SVD) applied to the data matrix containing noisy reservoir activation states; and (b) data-filtering techniques to remove the high-frequencies from the noisy reservoir activation states. We show that denoising reservoir activation states improve the signal-to-noise ratios with smaller training loss. Finally, we demonstrate that the training and denoising of the noisy reservoir activation signals in RF-QRC are highly parallelizable on multiple Quantum Processing Units (QPUs) as compared to the QRC architecture with recurrent connections. The analyses are numerically showcased on prototypical chaotic dynamical systems with relevance to turbulence. This work opens opportunities for using quantum reservoir computing with finite samples for time-series forecasting on near-term quantum hardware.
Related papers
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Accurate Numerical Simulations of Open Quantum Systems Using Spectral Tensor Trains [0.0]
Decoherence between qubits is a major bottleneck in quantum computations.
We present a numerical method, Quantum Accelerated Propagator Evaluation (Q-ASPEN)
Q-ASPEN is arbitrarily accurate and can be applied to provide estimates for resources needed to error-correct quantum computations.
arXiv Detail & Related papers (2024-07-16T02:33:27Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Overcoming the Coherence Time Barrier in Quantum Machine Learning on Temporal Data [0.0]
We present a machine learning algorithm, NISQRC, for qubit-based quantum systems.
We show that NISQRC can recover arbitrarily long test signals, not limited by coherence time.
arXiv Detail & Related papers (2023-12-26T18:54:33Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
We examine our quantum machine learning models, which are based on quantum support vector classification (QSVC) and quantum support vector regression (QSVR)
We investigate these models using a quantum-circuit simulator, both with and without noise, as well as the IonQ Harmony quantum processor.
For the classification tasks, the performance of our QSVC models using 4 qubits of the trapped-ion quantum computer was comparable to that obtained from noiseless quantum-circuit simulations.
arXiv Detail & Related papers (2023-07-05T08:06:41Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Divide and Compute: Exploring The Effect of Different Noise
Sources [0.9659642285903421]
We show the first implementation of the Quantum Divide and Compute (QDC) method, which allows to break quantum circuits into smaller fragments with fewer qubits and shallower depth.
This article investigates the impact of different noise sources on the success probability of the QDC procedure.
We describe in detail the noise models we used to reproduce experimental runs on IBM's Johannesburg processor.
arXiv Detail & Related papers (2021-02-07T12:18:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.