Human-Centered AI Applications for Canada's Immigration Settlement Sector
- URL: http://arxiv.org/abs/2409.01461v1
- Date: Mon, 2 Sep 2024 20:52:11 GMT
- Title: Human-Centered AI Applications for Canada's Immigration Settlement Sector
- Authors: Isar Nejadgholi, Maryam Molamohammadi, Kimiya Missaghi, Samir Bakhtawar,
- Abstract summary: This paper emphasizes the potential of AI in Canada's immigration settlement phase.
By highlighting the settlement sector as a prime candidate for reliable AI applications, we demonstrate its unique capacity to empower immigrants directly.
We outline a vision for human-centred and responsible AI solutions that facilitate the integration of newcomers.
- Score: 5.5437761853813665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While AI has been frequently applied in the context of immigration, most of these applications focus on selection and screening, which primarily serve to empower states and authorities, raising concerns due to their understudied reliability and high impact on immigrants' lives. In contrast, this paper emphasizes the potential of AI in Canada's immigration settlement phase, a stage where access to information is crucial and service providers are overburdened. By highlighting the settlement sector as a prime candidate for reliable AI applications, we demonstrate its unique capacity to empower immigrants directly, yet it remains under-explored in AI research. We outline a vision for human-centred and responsible AI solutions that facilitate the integration of newcomers. We call on AI researchers to build upon our work and engage in multidisciplinary research and active collaboration with service providers and government organizations to develop tailored AI tools that are empowering, inclusive and safe.
Related papers
- Social and Ethical Risks Posed by General-Purpose LLMs for Settling Newcomers in Canada [6.056177220363428]
General-purpose generative AI might become a common practice among newcomers and service providers to address this need.
These tools are not tailored for the settlement domain and can have detrimental implications for immigrants and refugees.
We explore the risks that these tools might pose on newcomers to first, warn against the unguarded use of generative AI, and second, to incentivize further research and development in creating AI literacy programs.
arXiv Detail & Related papers (2024-07-15T19:23:06Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
An Artificial Intelligence (AI) agent is a software entity that autonomously performs tasks or makes decisions based on pre-defined objectives and data inputs.
This survey delves into the emerging security threats faced by AI agents, categorizing them into four critical knowledge gaps.
By systematically reviewing these threats, this paper highlights both the progress made and the existing limitations in safeguarding AI agents.
arXiv Detail & Related papers (2024-06-04T01:22:31Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
Some researchers fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal.
We propose that major AI developers commit to providing a legal and technical safe harbor.
We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
arXiv Detail & Related papers (2024-03-07T20:55:08Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Towards AI-Empowered Crowdsourcing [27.0404686687184]
We propose a taxonomy which divides AI-Empowered Crowdsourcing into three major areas: task delegation, motivating workers, and quality control.
We discuss the limitations and insights, and curate the challenges of doing research in each of these areas to highlight promising future research directions.
arXiv Detail & Related papers (2022-12-28T05:06:55Z) - AI-Assisted Authentication: State of the Art, Taxonomy and Future
Roadmap [0.0]
This paper focuses on the applications of artificial intelligence in authentication.
With the emerging AI-assisted authentication schemes, our survey provides an overall understanding on a high level.
In contrast to other relevant surveys, our research is the first of its kind to focus on the roles of AI in authentication.
arXiv Detail & Related papers (2022-04-25T21:16:55Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z) - Skilled and Mobile: Survey Evidence of AI Researchers' Immigration
Preferences [0.0]
The U.S. is the most popular destination for AI researchers, followed by the U.K., Canada, Switzerland, and France.
Visa and immigration difficulties were perceived to be a particular impediment to conducting AI research in the U.S., the U.K., and Canada.
arXiv Detail & Related papers (2021-04-15T05:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.