An Implementation of Werewolf Agent That does not Truly Trust LLMs
- URL: http://arxiv.org/abs/2409.01575v1
- Date: Tue, 3 Sep 2024 03:16:03 GMT
- Title: An Implementation of Werewolf Agent That does not Truly Trust LLMs
- Authors: Takehiro Sato, Shintaro Ozaki, Daisaku Yokoyama,
- Abstract summary: Werewolf is an incomplete information game, which has several challenges when creating a computer agent as a player.
We propose a werewolf agent that solves some of those difficulties by combining a Large Language Model (LLM) and a rule-based algorithm.
- Score: 0.8811927506272431
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Werewolf is an incomplete information game, which has several challenges when creating a computer agent as a player given the lack of understanding of the situation and individuality of utterance (e.g., computer agents are not capable of characterful utterance or situational lying). We propose a werewolf agent that solves some of those difficulties by combining a Large Language Model (LLM) and a rule-based algorithm. In particular, our agent uses a rule-based algorithm to select an output either from an LLM or a template prepared beforehand based on the results of analyzing conversation history using an LLM. It allows the agent to refute in specific situations, identify when to end the conversation, and behave with persona. This approach mitigated conversational inconsistencies and facilitated logical utterance as a result. We also conducted a qualitative evaluation, which resulted in our agent being perceived as more human-like compared to an unmodified LLM. The agent is freely available for contributing to advance the research in the field of Werewolf game.
Related papers
- Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
This research explores converting a nonsensical suffix attack into a sensible prompt via a situation-driven contextual re-writing.
We combine an independent, meaningful adversarial insertion and situations derived from movies to check if this can trick an LLM.
Our approach demonstrates that a successful situation-driven attack can be executed on both open-source and proprietary LLMs.
arXiv Detail & Related papers (2024-07-19T19:47:26Z) - Transforming Agency. On the mode of existence of Large Language Models [0.0]
This paper investigates the ontological characterization of Large Language Models (LLMs) like ChatGPT.
We argue that ChatGPT should be characterized as an interlocutor or linguistic automaton, a library-that-talks, devoid of (autonomous) agency.
arXiv Detail & Related papers (2024-07-15T14:01:35Z) - BadAgent: Inserting and Activating Backdoor Attacks in LLM Agents [26.057916556444333]
We show that such methods are vulnerable to our proposed backdoor attacks named BadAgent.
Our proposed attack methods are extremely robust even after fine-tuning on trustworthy data.
arXiv Detail & Related papers (2024-06-05T07:14:28Z) - Leveraging Word Guessing Games to Assess the Intelligence of Large
Language Models [105.39236338147715]
The paper is inspired by the popular language game Who is Spy''
We develop DEEP to evaluate LLMs' expression and disguising abilities.
We then introduce SpyGame, an interactive multi-agent framework.
arXiv Detail & Related papers (2023-10-31T14:37:42Z) - Language Agents with Reinforcement Learning for Strategic Play in the
Werewolf Game [40.438765131992525]
We develop strategic language agents that generate flexible language actions and possess strong decision-making abilities.
To mitigate the intrinsic bias in language actions, our agents use an LLM to perform deductive reasoning and generate a diverse set of action candidates.
Experiments show that our agents overcome the intrinsic bias and outperform existing LLM-based agents in the Werewolf game.
arXiv Detail & Related papers (2023-10-29T09:02:57Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay.
We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction.
Results affirm the framework's effectiveness in creating adaptive agents and suggest LLM-based agents' potential in navigating dynamic social interactions.
arXiv Detail & Related papers (2023-10-23T14:35:26Z) - Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games [14.063311955315077]
Large language models (LLMs) are effective at answering questions that are clearly asked.
When faced with ambiguous queries they can act unpredictably and produce incorrect outputs.
This underscores the need for the development of intelligent agents capable of asking clarification questions to resolve ambiguities effectively.
arXiv Detail & Related papers (2023-10-02T16:55:37Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
We propose to incorporate a mental state and utility model into dialogue agents.
The hybrid mental state extracts information from both the dialogue and event observations.
The utility model is a ranking model that learns human preferences from a crowd-sourced social commonsense dataset.
arXiv Detail & Related papers (2021-03-12T00:06:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.