Transforming Agency. On the mode of existence of Large Language Models
- URL: http://arxiv.org/abs/2407.10735v2
- Date: Tue, 16 Jul 2024 09:53:15 GMT
- Title: Transforming Agency. On the mode of existence of Large Language Models
- Authors: Xabier E. Barandiaran, Lola S. Almendros,
- Abstract summary: This paper investigates the ontological characterization of Large Language Models (LLMs) like ChatGPT.
We argue that ChatGPT should be characterized as an interlocutor or linguistic automaton, a library-that-talks, devoid of (autonomous) agency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper investigates the ontological characterization of Large Language Models (LLMs) like ChatGPT. Between inflationary and deflationary accounts, we pay special attention to their status as agents. This requires explaining in detail the architecture, processing, and training procedures that enable LLMs to display their capacities, and the extensions used to turn LLMs into agent-like systems. After a systematic analysis we conclude that a LLM fails to meet necessary and sufficient conditions for autonomous agency in the light of embodied theories of mind: the individuality condition (it is not the product of its own activity, it is not even directly affected by it), the normativity condition (it does not generate its own norms or goals), and, partially the interactional asymmetry condition (it is not the origin and sustained source of its interaction with the environment). If not agents, then ... what are LLMs? We argue that ChatGPT should be characterized as an interlocutor or linguistic automaton, a library-that-talks, devoid of (autonomous) agency, but capable to engage performatively on non-purposeful yet purpose-structured and purpose-bounded tasks. When interacting with humans, a "ghostly" component of the human-machine interaction makes it possible to enact genuine conversational experiences with LLMs. Despite their lack of sensorimotor and biological embodiment, LLMs textual embodiment (the training corpus) and resource-hungry computational embodiment, significantly transform existing forms of human agency. Beyond assisted and extended agency, the LLM-human coupling can produce midtended forms of agency, closer to the production of intentional agency than to the extended instrumentality of any previous technologies.
Related papers
- Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents.
By analyzing this multi-agent simulation, we report valuable new insights into how social norms, cooperation, and personality traits can emerge spontaneously.
arXiv Detail & Related papers (2024-11-05T16:49:33Z) - Exploring Prosocial Irrationality for LLM Agents: A Social Cognition View [21.341128731357415]
Large language models (LLMs) have been shown to face hallucination issues due to the data they trained on often containing human bias.
We propose CogMir, an open-ended Multi-LLM Agents framework that utilizes hallucination properties to assess and enhance LLM Agents' social intelligence.
arXiv Detail & Related papers (2024-05-23T16:13:33Z) - Large Language Models as Instruments of Power: New Regimes of Autonomous Manipulation and Control [0.0]
Large language models (LLMs) can reproduce a wide variety of rhetorical styles and generate text that expresses a broad spectrum of sentiments.
We consider a set of underestimated societal harms made possible by the rapid and largely unregulated adoption of LLMs.
arXiv Detail & Related papers (2024-05-06T19:52:57Z) - GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications [46.85306320942487]
Large Language Models (LLMs) are evolving to actively engage with tools and performing actions on real-world applications and services.
Today, humans verify the correctness and appropriateness of the LLM-generated outputs before putting them into real-world execution.
This poses significant challenges as code comprehension is well known to be notoriously difficult.
In this paper, we study how humans can efficiently collaborate with, delegate to, and supervise autonomous LLMs in the future.
arXiv Detail & Related papers (2024-04-10T11:17:33Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
Multimodal Large Language Models (MLLMs) are constantly defining the new boundary of Artificial General Intelligence (AGI)
Our paper explores a novel vulnerability in MLLM societies - the indirect propagation of malicious content.
arXiv Detail & Related papers (2024-02-20T23:08:21Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - Investigating Agency of LLMs in Human-AI Collaboration Tasks [24.562034082480608]
We build on social-cognitive theory to develop a framework of features through which Agency is expressed in dialogue.
We collect a new dataset of 83 human-human collaborative interior design conversations.
arXiv Detail & Related papers (2023-05-22T08:17:14Z) - Inner Monologue: Embodied Reasoning through Planning with Language
Models [81.07216635735571]
Large Language Models (LLMs) can be applied to domains beyond natural language processing.
LLMs planning in embodied environments need to consider not just what skills to do, but also how and when to do them.
We propose that by leveraging environment feedback, LLMs are able to form an inner monologue that allows them to more richly process and plan in robotic control scenarios.
arXiv Detail & Related papers (2022-07-12T15:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.