Unveiling Advanced Frequency Disentanglement Paradigm for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2409.01641v1
- Date: Tue, 3 Sep 2024 06:19:03 GMT
- Title: Unveiling Advanced Frequency Disentanglement Paradigm for Low-Light Image Enhancement
- Authors: Kun Zhou, Xinyu Lin, Wenbo Li, Xiaogang Xu, Yuanhao Cai, Zhonghang Liu, Xiaoguang Han, Jiangbo Lu,
- Abstract summary: We propose a novel low-frequency consistency method, facilitating improved frequency disentanglement optimization.
Noteworthy improvements are showcased across five popular benchmarks, with up to 7.68dB gains on PSNR achieved for six state-of-the-art models.
Our approach maintains efficiency with only 88K extra parameters, setting a new standard in the challenging realm of low-light image enhancement.
- Score: 61.22119364400268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous low-light image enhancement (LLIE) approaches, while employing frequency decomposition techniques to address the intertwined challenges of low frequency (e.g., illumination recovery) and high frequency (e.g., noise reduction), primarily focused on the development of dedicated and complex networks to achieve improved performance. In contrast, we reveal that an advanced disentanglement paradigm is sufficient to consistently enhance state-of-the-art methods with minimal computational overhead. Leveraging the image Laplace decomposition scheme, we propose a novel low-frequency consistency method, facilitating improved frequency disentanglement optimization. Our method, seamlessly integrating with various models such as CNNs, Transformers, and flow-based and diffusion models, demonstrates remarkable adaptability. Noteworthy improvements are showcased across five popular benchmarks, with up to 7.68dB gains on PSNR achieved for six state-of-the-art models. Impressively, our approach maintains efficiency with only 88K extra parameters, setting a new standard in the challenging realm of low-light image enhancement.
Related papers
- Enhancing Low Dose Computed Tomography Images Using Consistency Training Techniques [7.694256285730863]
In this paper, we introduce the beta noise distribution, which provides flexibility in adjusting noise levels.
High Noise Improved Consistency Training (HN-iCT) is trained in a supervised fashion.
Our results indicate that unconditional image generation using HN-iCT significantly outperforms basic CT and iCT training techniques with NFE=1.
arXiv Detail & Related papers (2024-11-19T02:48:36Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.
It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.
It successfully alleviates the dependence on pairwise training data via zero-reference learning.
arXiv Detail & Related papers (2024-03-05T11:39:17Z) - Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion [28.049668999586583]
We propose a novel and robust low-light image enhancement method via CLIP-Fourier Guided Wavelet Diffusion, abbreviated as CFWD.
CFWD leverages multimodal visual-language information in the frequency domain space created by multiple wavelet transforms to guide the enhancement process.
Our approach outperforms existing state-of-the-art methods, achieving significant progress in image quality and noise suppression.
arXiv Detail & Related papers (2024-01-08T10:08:48Z) - Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction [14.037398189132468]
We present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction.
Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure.
Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform.
arXiv Detail & Related papers (2023-08-30T10:48:53Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
Cycle-Interactive Generative Adversarial Network (CIGAN) is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals.
In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN into the generator of degradation GAN.
arXiv Detail & Related papers (2022-07-03T06:37:46Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.