DAOs of Collective Intelligence? Unraveling the Complexity of Blockchain Governance in Decentralized Autonomous Organizations
- URL: http://arxiv.org/abs/2409.01823v1
- Date: Tue, 3 Sep 2024 12:06:15 GMT
- Title: DAOs of Collective Intelligence? Unraveling the Complexity of Blockchain Governance in Decentralized Autonomous Organizations
- Authors: Mark C. Ballandies, Dino Carpentras, Evangelos Pournaras,
- Abstract summary: Decentralized autonomous organizations (DAOs) have transformed organizational structures by shifting from traditional control to decentralized control.
Despite managing significant funds and building global networks, DAOs face challenges like declining participation, increasing centralization, and inabilities to adapt to changing environments.
This paper explores complex systems and applies complexity science to explain their inefficiencies.
- Score: 0.7499722271664144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized autonomous organizations (DAOs) have transformed organizational structures by shifting from traditional hierarchical control to decentralized approaches, leveraging blockchain and cryptoeconomics. Despite managing significant funds and building global networks, DAOs face challenges like declining participation, increasing centralization, and inabilities to adapt to changing environments, which stifle innovation. This paper explores DAOs as complex systems and applies complexity science to explain their inefficiencies. In particular, we discuss DAO challenges, their complex nature, and introduce the self-organization mechanisms of collective intelligence, digital democracy, and adaptation. By applying these mechansims to improve DAO design and construction, a practical design framework for DAOs is created. This contribution lays a foundation for future research at the intersection of complexity science and DAOs.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Hybrid-DAOs: Enhancing Governance, Scalability, and Compliance in Decentralized Systems [30.983041162098303]
Decentralized Autonomous Organizations (DAOs) are emerging governance protocols that enable decentralized community management without a central authority.
They face challenges regarding scalability, governance, and compliance.
Hybrid-DAOs combine the decentralized nature ofs with traditional legal frameworks.
arXiv Detail & Related papers (2024-10-28T22:56:19Z) - Future of Algorithmic Organization: Large-Scale Analysis of Decentralized Autonomous Organizations (DAOs) [45.02792904507959]
Decentralized Autonomous Organizations (DAOs) resemble early online communities, particularly those centered around open-source projects.
In just a few years, the deployment of governance tokens surged with a total of $24.5 billion and 11.1M governance token holders collectively managing decisions across over 13,000s as of 2024.
We examine factors such as voting power, participation, and characteristics dictating the level of decentralization, thus, the efficiency of management structures.
arXiv Detail & Related papers (2024-10-16T23:45:10Z) - Decentralised Governance-Driven Architecture for Designing Foundation
Model based Systems: Exploring the Role of Blockchain in Responsible AI [20.47157829480463]
People are concerned about whether foundation model based AI systems are properly governed to ensure the trustworthiness and to prevent misuse that could harm humans, society and the environment.
We identify eight governance challenges of foundation model based AI systems regarding the three fundamental dimensions of governance: decision rights, incentives, and accountability.
We present an architecture that demonstrates how blockchain can be leveraged to realise governance in foundation model based AI systems.
arXiv Detail & Related papers (2023-08-11T06:41:47Z) - Blockchain-based Decentralized Co-governance: Innovations and Solutions
for Sustainable Crowdfunding [7.625045691540373]
Decentralized Co-governance Crowdfunding Ecosystem is a novel solution addressing challenges in conventional crowdfunding.
Among the problems it seeks to mitigate are high transaction costs, lack of transparency, fraud, and inefficient resource allocation.
Our research unfolds the evolution of the DCC ecosystem through distinct phases, offering a novel understanding of socioeconomic dynamics in a decentralized digital world.
arXiv Detail & Related papers (2023-06-01T16:26:35Z) - Unpacking How Decentralized Autonomous Organizations (DAOs) Work in
Practice [54.47385318258732]
Decentralized Autonomous Organizations (DAOs) have emerged as a novel way to coordinate a group of entities towards a shared vision.
In just a few years, over 4,000 DAOs have been launched in various domains, such as investment, education, health, and research.
Despite such rapid growth and diversity, it is unclear how theses actually work in practice and to what extent they are effective in achieving their goals.
arXiv Detail & Related papers (2023-04-17T01:30:03Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
We establish a framework for directing a society of simple, specialized, self-interested agents to solve sequential decision problems.
We derive a class of decentralized reinforcement learning algorithms.
We demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.
arXiv Detail & Related papers (2020-07-05T16:41:09Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.